

Tides in Oceans Bounded by Meridians. III. Ocean Bounded by Complete Meridian: Semidiurnal Tides

A. T. Doodson

Phil. Trans. R. Soc. Lond. A 1938 237, 311-373

doi: 10.1098/rsta.1938.0010

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[311]

TIDES IN OCEANS BOUNDED BY MERIDIANS III. OCEAN BOUNDED BY COMPLETE MERIDIAN: SEMIDIURNAL TIDES

By A. T. DOODSON, F.R.S.

(Received 29 November 1937)

1. Introduction

The first two parts of this series of memoirs have dealt with the general equations for the motion in an ocean bounded by a complete meridian (Proudman 1936) and with their application to the diurnal tide (Doodson 1936 a). This present memoir is concerned with the semidiurnal tide (K_2) .

The investigation, as in Part II, is dependent upon the formulation and numerical solution of the equations resulting from the use of sixty-three co-ordinates or variables, and the solution has been effected and is illustrated for twenty values of the depth of the ocean, from very large to medium depths. Though a part of the work of solution is common to all cases, in effect twenty sets of equations, each set having sixty-three equations, have been solved.

The results are of exceedingly great interest in connexion with tidal theory. The genesis and development of amphidromic systems, as the depth is changed, can be fully traced. The possible systems of cotidal lines are of great variety. The type of amphidromic system changes so rapidly with the depth that a single illustration of the tides for a particular depth is of doubtful value for comparison with an actual ocean. It is hoped that the complete series of illustrations will provide material for the derivation of principles which can be applied to terrestrial oceans.

2. Notation

We shall denote by a the radius of the earth, by g the acceleration of gravity at the earth's surface, and by h the depth of the ocean, supposed uniform. Let O be the centre of the ocean, on the equator, let A be a point to the east of O, and let P be any variable point of the ocean. Then we shall denote by θ , χ the side OP and the angle AOP, respectively, of the spherical triangle AOP. Further, we shall denote by ζ the elevation of the free surface of the ocean at any time at P; by u, v the components of current at any time at P in the directions of OP and a right angle in advance of OP, respectively; by ζ the "equilibrium-form" of ζ corresponding to the disturbing forces; and by H the maximum value of $\overline{\zeta}$.

Vol. CCXXXVII. A. 779. (Price 8s.)

[Published 10 June 1938

312

A. T. DOODSON

The motion will be taken as having a time factor $e^{i\sigma t}$ where the "speed" σ is equal to twice the angular speed of the earth's rotation, so that the semidiurnal tide considered will be the luni-solar tide K_2 . In Proudman's formulae, f will thus be taken as unity.

The equations given by Proudman refer to certain Lagrangian co-ordinates denoted by p_r^n and p_{-r}^n , and to certain coefficients $\beta_{r,s}^{n,m}$,... defined in Part I. The parameter β is associated with the depth (Part I (3.93)) in the form

$$eta = rac{\sigma^2 a^2}{gh}.$$

3. Formulae for auxiliary functions

The solution given by Proudman makes use of two auxiliary functions, ϕ and ψ , which can be written for the semidiurnal case as

$$\phi = \sum_{r,n} p_r^n \pi_r^n F_r^n(\theta) \cos n\chi e^{i\sigma t}, \qquad (3.1)$$

$$\psi = \sum_{r,n} p_{-r}^n \pi_r^n F_r^n(\theta) \sin n\chi e^{i\sigma t}, \qquad (3.2)$$

where

$$\pi_r^n = \{ \frac{1}{2} \pi r (r+1) \}^{-\frac{1}{2}} \quad (n > 0), \tag{3.3}$$

$$\pi_r^0 = \{\pi r(r+1)\}^{-\frac{1}{2}},\tag{3.4}$$

and where $F_r^n(\theta)$ is a form of the associated Legendre function (Doodson 1936 b).

4. Formulae for the Lagrangian co-ordinates

In order to deal with real quantities throughout, and to avoid the continual writing of $i = \sqrt{-1}$, we shall deal with ip_r^n where the co-ordinates are imaginary.

The equations of Part I (3.91), (3.92), for the semidiurnal case then take the form

$$p_r^n = \Pi_r^n + \frac{\beta}{\lambda_r} \left\{ p_r^n - \sum_{s,m} \beta_{r,s}^{n,m} i p_s^m - \sum_{t,m} \beta_{r,-t}^{n,m} i p_{-t}^m \right\} \quad (r, n, t \text{ even}; s, m \text{ odd}), \tag{4.1}$$

$$ip_r^n = i\Pi_r^n + \frac{\beta}{\lambda_r} \left\{ ip_r^n + \sum_{s,m} \beta_{r,s}^{n,m} p_s^m + \sum_{t,m} \beta_{r,-t}^{n,m} p_{-t}^m \right\}$$
 $(r, n, t \text{ odd}; s, m \text{ even}),$ (4.2)

$$p_{-r}^{n} = \Pi_{-r}^{n} + \sum_{s,m} \beta_{-r,-s}^{n,m} i p_{-s}^{m} \quad (r, m \text{ odd}; s, n \text{ even}),$$
(4.3)

$$ip_{-r}^n = i\Pi_{-r}^n - \sum_{s,m} \beta_{-r,-s}^{n,m} p_{-s}^m \quad (r, m \text{ even}; s, n \text{ odd}),$$
 (4.4)

where

$$\Pi_{-r}^{n} = \sum_{s,m} \beta_{-r,s}^{n,m} i p_{s}^{m} \qquad (r, s, m \text{ odd}; n \text{ even}),$$
(4.5)

$$i\Pi_{-r}^n = -\sum_{s,m} \beta_{-r,s}^{n,m} p_s^m \quad (r, s, m \text{ even}; n \text{ odd}), \tag{4.6}$$

$$\lambda_r = r(r+1). \tag{4.7}$$

The values of $\beta_{r,s}^{n,m}$, etc. are obtained according to the relations appropriate to "the even solution" of Part I (4.41, 4.42 and 4.43), and these relations also determine the statements as to r, s, m, n, t being odd or even.

The values of Π_r^n (r even) and $i\Pi_r^n$ (r odd), from Part I (4.51), are as follows:

n	r	\varPi_r^n	n	r	$i \Pi_r^n$
0	2	$-0.45764\ H/h$	1	1	$0.76750 \; H/h$
2	2	$0 \cdot 26422$		3	0.19539
				5	-0.03062
				7	0.00999
				9	-0.00503
				11	0.00277

5. Transformation of Principal Equations

The tabular representation of the equations given above should be found in Tables I— VI, but to save space these tables are represented as slight modifications of tables appropriate to the diurnal tide.

As in Part II, 5, equation (4.3) has been transformed by substituting from (4.4) by successive approximations so as to obtain p_{-r}^n in terms of Π_{-s}^m and $i\Pi_{-s}^m$, the results being given in full in Table VII. The interpretation of this table is given by the example

$$p_{-3}^2 = 1.0205 \, \Pi_{-3}^2 + 0.0033 \, \Pi_{-5}^2 + \dots + 0.0992 \, i \Pi_{-2}^1 + \dots,$$

and all the other tables can be similarly interpreted.

In the previous part no further transformations were considered as economical of labour, and a solution was effected in series of powers of β , but such methods are not in this case available for the desired range of β owing to the increase in the size of the coefficients. It was found that the least labour was involved by eliminating p_{-t}^n from equations $(4\cdot1)$ to $(4\cdot4)$.

Hence, (4.4) was also transformed to give ip_{-r}^n in terms of Π_{-s}^m and $i\Pi_{-s}^m$, Table VIII. Then (4.5), (4.6) were used to eliminate Π_{-s}^m and $i\Pi_{-s}^m$, and so to give p_{-r}^n and ip_{-r}^n in terms of p_s^m and ip_s^m , Tables IX and X. The methods of computation and checking are exactly the same as those described in Part II.

The elimination of p_{-r}^n and ip_{-r}^n from $(4\cdot1)$ and $(4\cdot2)$ was then effected, leaving equations connecting together p_r^n and ip_r^n . The problem was thus reduced to the solution of the thirty-six simultaneous equations given in Tables XI and XII.

6. Solution for small values of β

The first method which was exploited was one on similar lines to that which was so successful for the diurnal tide, in which series of expansions in powers of $\beta/40$ were derived for certain of the principal co-ordinates. As the coefficients of the co-ordinates in the equations for the semidiurnal tide were twice as great as those for the diurnal tide it was found that a similar method could only be applied for a much smaller range of β .

313

It was decided to express each co-ordinate in terms of

$$H/h, ip_1^1, p_2^0, p_2^2, ip_3^1, ip_3^3,$$
 (6·1)

in a series expansion in powers of $\beta/10$, and to obtain the results for $\beta=1,\,2\dots 10$, as given in Table XIII. From this point onwards it was hoped to extrapolate values for $\beta = 11$, and to use these by substituting in the principal equations in order to get more accurate values. This method was not very easy, and it was abandoned after getting as far as $\beta = 14$. The reason for this was that the fundamental equations show the likelihood of resonance taking place for values of β approximately equal to r(r+1). This difficulty had been foreseen, but it was expected that by stopping short of r = 4 in the list of independent variables (6·1) no real trouble would occur until β approached 20. It had been expected that it would then be possible to change the independent variables so as to exclude ip_1^1 , p_2^0 , p_2^2 , and to include p_4^0 , p_4^2 , p_4^4 , but no simple way of effecting this transformation was discovered.

The substitution of the results given in Table XIII in the equations for the five independent variables (6·1) in Tables XI and XII, which equations were not used in the foregoing computations, yielded five simultaneous equations in these variables, for each value of β , and these are tabulated in Table XIV. The solutions of these equations are given in Table XVII, and the resulting values of $p_r^n \pi_r^n$ and $p_{-r}^n \pi_r^n$, after substituting for the independent variables in Table XIII, applying Tables IX and X, and multiplying by π_r^n , are given in Tables XIX and XX respectively.

The general method of solution

The experiences outlined in the previous article showed that it would be necessary to take as independent variables all the co-ordinates with suffix r such that r(r+1) was less than the largest value of β , and it was decided to express the co-ordinates in terms of

$$H/h, ip_1^1, p_2^0, p_2^2, ..., p_6^4, p_6^6,$$
 (7·1)

and to use series expansions in powers of $\beta/40$. This was done, and then the co-ordinates were tabulated by the series for $\beta = 8, 12, 16, 20, ..., 40$, but in the sequel it was decided for the present to give the final results only for as far as $\beta = 20$. It was also found that the results for $\beta = 8$ and 12 corresponded with those obtained by the earlier method. Hence Table XV only gives the tabulations for $\beta = 12, 16, 20$ and 24. It will be seen that in this table the coefficients run so smoothly that interpolation for other values of β can easily be made.

Substitution for the dependent co-ordinates from Table XV in the previously unused equations for the independent co-ordinates in Tables XI and XII yielded equations in terms of the independent co-ordinates only, and so were obtained a set of fifteen simultaneous equations for each value of $\beta = 8, 12, 16, ..., 40$. A selection of these is given in Table XVI.

In these tables the equations have been multiplied by $\lambda_r = r(r+1)$ in order to obtain symmetry about a diagonal, and the entries show that interpolation can be accurately effected for intermediate values of β , which was carried out for $\beta = 15, 17, 18, 19$. It has not been considered necessary to include these interpolated tables.

The solution of the equations from $\beta = 15$ to $\beta = 20$ offered no real difficulty, and the resulting values of p_r^n are given in Table XVIII.

From these values of the independent co-ordinates the dependent co-ordinates were computed by using Table XV and thence Tables IX and X. The results, after multiplying by π_n^n from (3·3) and (3·4) are given in Tables XIX and XX, which thus contain all the values of the 63 co-ordinates, tabulated for $\beta = 0, 1, ..., 20$.

8. Computation of ϕ , ψ , u, v

Having obtained the co-ordinates, it is a simple process to obtain from $(3\cdot1)$ and $(3\cdot2)$ the values of the auxiliary functions ϕ and ψ , which are tabulated in Tables XXI and XXII.

It may be remarked that these tables are given in series involving $\cos s\theta$ or $\sin s\theta$, and the convergence of the coefficients is very good in all cases.

The values of the components of velocity, u and v, follow from the equations (2.6) in Part I, which can be written as

$$2i\sin\theta \frac{u}{\sigma a} = 2\sin\theta \frac{\partial\phi}{\partial\theta} + 2\frac{\partial\psi}{\partial\chi},$$
 (8.1)

315

$$-2i\sin\theta \frac{v}{\sigma a} = 2\sin\theta \frac{\partial\psi}{\partial\theta} - 2\frac{\partial\phi}{\partial\chi}.$$
 (8.2)

The differentiation of the Fourier series, whether in θ or χ , is a very simple process, and so also is the simultaneous multiplication by $2\sin\theta$.

The whole calculation was effected on a calculating machine by suitably arranging the terms of ϕ and ψ , and by placing alongside them the appropriate multiples on a strip of paper. The actual values of u and v have not been obtained other than in the forms (8.1) and (8.2), which were most convenient for the subsequent stages. It has not been thought necessary in this part to print the expansions for u and v.

9. Computation of ζ

The last stages of calculation are concerned with the evaluation of ζ , using the formula

$$\frac{\partial}{\partial \theta} \left(\frac{\zeta - \overline{\zeta}}{h} \right) = \beta \left(-i \frac{u}{\sigma a} + \sin \theta \sin \chi \frac{v}{\sigma a} \right) \tag{9.1}$$

$$\text{with} \quad \frac{\overline{\zeta}}{h} = H\{(0\cdot 25 + 0\cdot 75\cos 2\theta) - (0\cdot 25 - 0\cdot 25\cos 2\theta)\cos 2\chi + i\sin 2\theta\cos\chi\}e^{i\sigma t} \quad (9\cdot 2)$$

from Part I (2·2) and (2·41). It was shown in Part II, 12, that the use of (9·1) gives much greater convergence than either of two other possible methods for determining ζ .

The processes involved were sufficiently explained in Part II, 12, and the results are given in Table XXIII. As in the diurnal case, odd and even values of s occur in the expansions in $\cos s\theta$ and $\sin s\theta$, and the cases where s=0 need special reference. A constant of integration is introduced to satisfy (1) the condition of invariability of volume or (2) the condition that the elevation at the point $\theta=0$, $\chi=0$ shall be independent of χ . The first condition is satisfied automatically by the factors in χ except when n=0, and in this case it is necessary to take the constant equal to

$$-\int_0^{\frac{1}{2}\pi} \zeta_0 \sin\theta \, d\theta, \tag{9.3}$$

where ζ_0 is that part of ζ with n = 0. The second condition requires $\zeta_n = 0$, when $\theta = 0$, n > 0, where ζ_n is the part of ζ with factor $\cos n\chi$.

No constant of integration is required for terms arising from $\sin s\theta$, but it should be noted that the term against s=0 has a coefficient of $\theta \cos n\chi$. The significance of this was pointed out in Part II, 12.

From the values of ζ in the complex form we deduce the form

$$\zeta = \zeta_1 \cos \sigma t + \zeta_2 \sin \sigma t, \qquad (9.4)$$

and thence
$$\zeta = R\cos{(\sigma t - \gamma)},$$
 (9.5)

where γ is the lag of phase of the semidiurnal tide behind the phase of the semidiurnal equilibrium tide (K_2) on the central meridian.

The values of ζ_1/H and ζ_2/H are given in Table XXIV, but they were computed for intervals of 10° in θ and χ . The tables have been contracted to save space, and for the same reason the numerical values of R, γ are not given, as it is considered that the charts give these to sufficient accuracy for all essential purposes. For the final discussion of the results the values of ζ_1 and ζ_2 will probably be more useful than R and γ .

The values of R and γ are given on the charts for the integral values of β from 0 to 20. Only a quadrant of the ocean is shown, because of symmetry or asymmetry about the equator and central meridian. The charts are drawn without respect to systems of projections, as though θ , χ were two-dimensional polar co-ordinates.

The co-range lines are drawn on a uniform plan, for ranges equal to the maximum range multiplied by 0.8, 0.6, 0.4 and 0.2. The factor to give the range in terms of the maximum equilibrium elevation H is given for each chart. The depths in miles are also given.

Before leaving the description of the computation of ζ , it is of interest to quote the results of certain tests which have been made on the whole of the calculations. One of the formulae quoted in Part II, 12, for the computation of ζ is the expression

$$\frac{\zeta}{h} = -\sum \lambda_r p_r^n \pi_r^n F_r^n(\theta) \cos n\chi e^{i\sigma t}$$
(9.6)

317

derived from Part I (3.51). The convergence shown by the terms of the formula is necessarily very poor because of the factor $\lambda_r = r(r+1)$, but the formula involves the fundamentals of the method to such a degree that any values of ζ obtained by its use will serve to confirm the general accuracy of the values obtained by the standard method.

For $\beta = 20$, the coefficients of $-\cos n\chi e^{i\sigma t}$ for three values of θ are given under (b) in the following table, while the values for the standard method are given under (a):

	$\theta =$	= 0°	$\theta =$	40°	$\theta =$	= 90°
n	(a)	(b)	(a)	(b)	(a)	(b)
0	$2 \cdot 15$	$2 \cdot 12$	-1.32	-1.32	$1 \cdot 26$	1.30
2			-3.05	-3.03	$2 \cdot 06$	$2 \cdot 14$
4			0.02	-0.09	3.62	3.26
6			0.06	0.04	-0.41	-0.21
1			1.08	1.05	$1 \cdot 42$	1.19
3			-0.35	-0.38	1.34	1.13
5			-0.14	-0.05	-2.08	-1.59
7			-0.01		-0.04	

As was pointed out in Part II, 12, the differences between (a) and (b) would be anticipated to be of an oscillatory nature, so that (a) might be considered as a smoothed version of (b). It was also pointed out that the differences between the results from the two methods of computing ζ will be greatest at the boundary ($\theta = 90^{\circ}$).

The above comparisons can be regarded as highly satisfactory, and the same is true of comparisons which have been made for other values of β .

10. The critical depths

The critical depths are those at which resonance tends to take place, and their values have been obtained by interpolation in the end equations during the process of solving the differential equations. (Unless all details of the computations were given it would not be of any value to give these end equations.) By these methods of computation the critical values of β , and the corresponding depths of the ocean, are as follows:

β	h			
1.896	153,200 ft.	=	29.0	miles
5.87	49,500 ,,			,,
9.41	30,900 ,, :	=	5.85	,,
12.69	22,880 ,, :	=	4.33	,,
15.62	18,590 ,,	=	3.52	,,

These can be confirmed by graphical (or even linear) interpolation for zero values of $1/(\zeta_1 - \overline{\zeta}_1)$ from the following table of $\zeta_1 - \overline{\zeta}_1$ at the pole:

β	$\zeta_1 - \bar{\zeta}_1$	β	$\zeta_1 - \bar{\zeta}_1$	β	$\zeta_1 - \bar{\zeta}_1$
0	0.00	7	-4.99	14	-5.69
1	0.38	8	-5.42	15	-10.25
2	-5.75	9	-14.75	16	14.57
3	-0.58	10	9.35	17	4.06
4	0.04	11	4.65	18	$2 \cdot 62$
5	$1 \cdot 64$	12	$6 \cdot 22$	19	2.43
6	-22.95	13	-14.10	20	3.23

Other sequences of $\zeta_1 - \overline{\zeta}_1$ or $\zeta_2 - \overline{\zeta}_2$ could also be used in confirmation.

318

A. T. DOODSON

The values of ϕ , ψ , u, v, ζ , R and γ have all been computed, and diagrams prepared, for these critical depths, but they are not published because the results have no outstanding points of interest. They will be referred to in the remarks on the charts.

11. Remarks on the charts for $\beta=0$ to $\beta=2$

Beginning with the case of the equilibrium tide for the infinite depth corresponding to $\beta = 0$, we note that as β increases the pole is no longer an amphidromic point and that the cotidal lines swing out to be spaced terminally along the bounding meridian. A minimum range develops also at a point on the central meridian.

The changes between $\beta = 1$ and $\beta = 2$ are not easily traced, owing to the great changes in the depths, but the development of the amphidromic system can be investigated as follows.

When $\beta = 0$, then

$$\overline{\zeta}_1/H = (0.75\cos 2\theta + 0.25) + (0.25\cos 2\theta - 0.25)\cos 2\chi, \tag{11.1}$$

and when $\beta = 1.896$, ζ_1 has been computed to be approximately proportional to

$$[\zeta_1]/H = (-4 \cdot 6\cos\theta + 2 \cdot 3) + (4 \cdot 6\cos\theta - 4 \cdot 6)\cos 2\chi, \tag{11.2}$$

but of course it is then infinitely large.

When $\beta = 1$ we have ζ_1 practically equal to

$$\overline{\zeta}_1 + 0.08 \left[\zeta_1\right]. \tag{11.3}$$

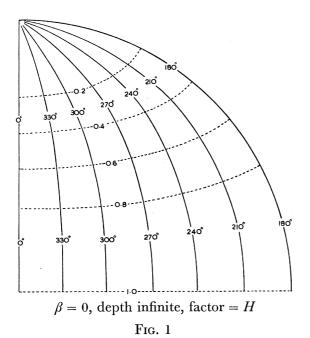
This suggests that for our purposes we can write, more generally

$$\zeta_1 = \overline{\zeta}_1 + x[\zeta_1], \tag{11.4}$$

where x is a variable whose only interest is that it steadily increases as β increases from $\beta=0$ to $\beta=1.896$. On the central meridian this gives

$$\zeta_1/H = \cos^2\theta - (9\cdot 2\cos\theta - 6\cdot 9) x. \tag{11.5}$$

Since ζ_2 is always zero on this meridian, then an amphidromic point will be found on the central meridian when ζ_1 is also zero, and this occurs when


$$x = \frac{\cos^2 \theta}{9 \cdot 2 \cos \theta - 6 \cdot 9}. (11 \cdot 6)$$

When x is infinite, then an amphidromic point is found at the point given by

$$\cos \theta = 6.9/9.2 = 0.75. \tag{11.7}$$

This is in agreement with the results obtained from the actual chart, which is also in close agreement with the chart for $\beta = 2$.

We also note that
$$\frac{\partial}{\partial \theta} \cdot \frac{\zeta_1}{H} = -(2\cos\theta - 4\cdot6x)\sin\theta, \qquad (11\cdot8)$$

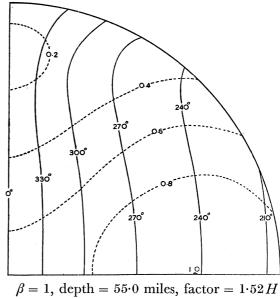


Fig. 2

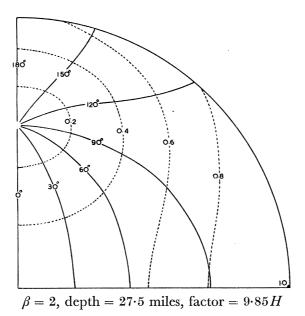


Fig. 3

and therefore ζ_1 is a minimum when $x = 0.22 \cos \theta$ and a maximum when $\theta = 0$, if x is less than 0.22, but when x is greater than 0.22 the minimum value occurs with $\theta = 0$. Hence, as x increases from zero, the point of minimum range on the central meridian moves from the pole towards the equator, and stays there until the range becomes zero, when the first amphidromic system develops and thereafter the amphidromic point moves towards the pole, as may be seen from (11.6), for x increases as $\cos \theta$ diminishes from unity. After the first critical depth is reached, x becomes a large negative quantity and the movement of the amphidromic point continues towards the pole.

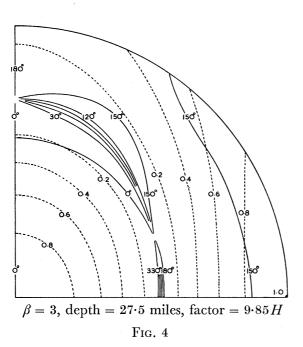
It should also be noted that instead of the equator being a line of maximum range (as for $\beta = 0$), we get a point of maximum range on the equator, and that this moves outwards (see the chart for $\beta = 1$) to the extremity of the equator.

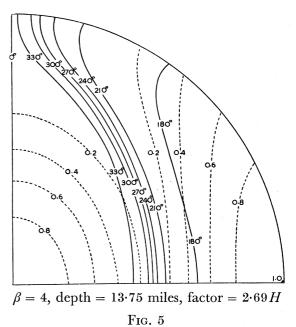
12. Remarks on the charts for $\beta=2$ to $\beta=6$

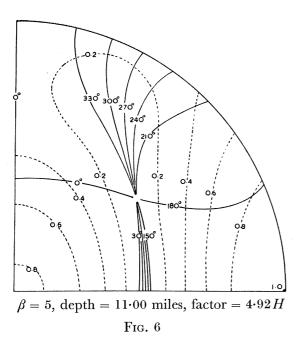
The changes between $\beta = 2$ and $\beta = 3$ are also difficult to follow but as the amphidromic system about the point on the central meridian still has a rotation in the positive sense, as in the case of $\beta = 2$, it appears as though the second amphidromic system near the equator has its origin in the crowding together of the cotidal lines on the equator.

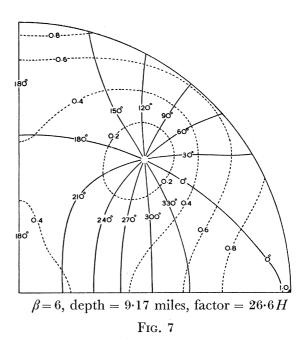
Between $\beta = 3$ and $\beta = 4$ the amphidromic point on the central meridian has gone out at the pole, the other point has travelled north also and has vanished at the boundary, as is shown by the progression of cotidal lines along the equator being the same in both cases.

The cotidal system for $\beta = 4$ is very interesting, for an approach to a nodal line is shown in the closeness of the parallel cotidal lines. Wherever this occurs, very rapid changes in the apparent character of the cotidal systems may be anticipated, as is seen in the chart for $\beta = 5$.


Between $\beta = 5$ and $\beta = 6$ there is obviously a critical value, as the rotation of the amphidromic system is in the same sense in each, though similarly situated lines differ in phase by 180°.


The amphidromic system for the critical value $\beta = 5.87$ is practically identical with that for $\beta = 6$.


Note that the point of maximum range is at the junction of the bounding meridian and the equator.


13. Remarks on the charts for $\beta=6$ to $\beta=10$

The chart for $\beta = 6$ shows a point of minimum range on the central meridian, and this can be taken to indicate the imminent development of an amphidromic system there, as for $\beta = 7$. The rotation of the amphidromic system in the centre of the quadrant for $\beta = 7$ is the same as that for $\beta = 6$, which shows continuity in the region.

Apart from a movement of the amphidromic system in the quadrant towards the boundary there is little change in the general characteristics of the charts for $\beta = 7$ and $\beta = 8$, but the crowding of the lines for $210-270^{\circ}$ shows the approach to another nodal system, which leads to the generation of a new amphidromic system in the centre of the quadrant for $\beta = 9$, together with the reversal of rotation of the system previously existing round a point on the central meridian.

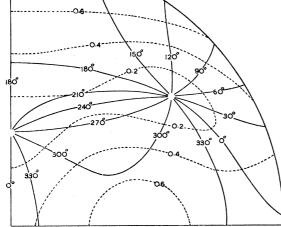
Proudman has suggested to the author that these changes may be followed more easily by considering only the lines of zero elevation for the two phases for ζ_1 and ζ_2 . This suggestion is of great value in such cases as the above. A small movement of either line will completely reverse the apparent rotation of the amphidromic system when the two lines are nearly parallel. In a later memoir this suggestion will probably be developed more fully.

Between $\beta = 9$ and $\beta = 10$ there is a critical value, evidenced by the increment of 180° for similarly situated lines, otherwise the directions of the rotation are the same, and the lines have spread out. The intrusion of a new system at the boundary is to be anticipated for the curves for $\beta = 9$.

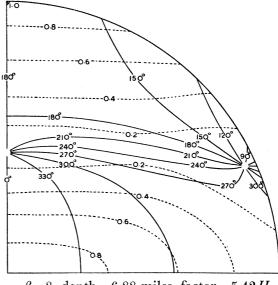
The chart for the critical depth for $\beta = 9.41$ is similar to that for $\beta = 10$ except for the new system at the boundary, though the lines are more evenly spaced along the equator, and the two amphidromic points are closer together.

Note that for $\beta = 7$ the point of maximum range now occurs at the pole, where it also occurs for $\beta = 8$, but the development of the maximum at the centre of the ocean is to be seen completed for $\beta = 9$.

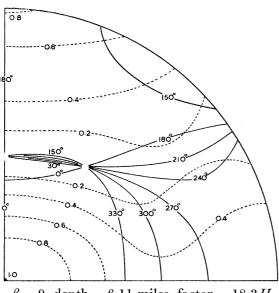
14. Remarks on the charts for $\beta=10$ to $\beta=20$

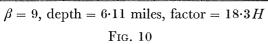

At first sight there does not seem to be much association between the systems for $\beta = 10$ and those for $\beta = 11$, but a consideration of the directions of rotation shows that the amphidromic point near the boundary in the former case has moved inwards, while that on the central meridian has remained nearly stationary, so that the lower amphidromic system for $\beta = 10$ has probably vanished at the equator.

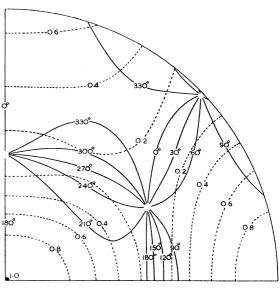
Note the changes in the position of the point of maximum range between $\beta = 10$ and $\beta = 11.$


The changes from $\beta = 11$ to $\beta = 12$ are small, but another fundamental change takes place between $\beta = 12$ and $\beta = 13$. The crowding together near the central meridian of the lines for 180, 210 and 240° for $\beta = 12$ indicates an approach to a nodal system, facilitating the development of another amphidromic point. The increment of 180° in phase for similarly situated lines for $\beta = 12$ and $\beta = 13$ is a consequence of passing through the critical depth. The directions of rotation of the upper system and the system in the middle of the quadrant are the same for both depths, thus verifying that it is the lower system on the central meridian which has crept in. The chart for the critical value $\beta = 12.69$ is very like that for $\beta = 13$.

1.0






 $\beta = 7$, depth = 7.86 miles, factor = 4.99 HFig. 8

 $\beta = 8$, depth = 6.88 miles, factor = 5.42 H Fig. 9

 $\beta = 10$, depth = 5.50 miles, factor = 12.71HFig. 11

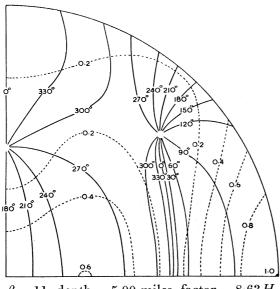
Note the position of the point of maximum range for $\beta = 13, 14, 15$.

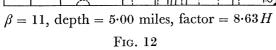
Between $\beta = 13$ and $\beta = 14$ the changes are in the direction of an approach to a nodal system parallel to the equator, which is favourable to the reversal of rotation in any amphidromic system. This is more evident in the chart for $\beta = 15$ in which the directions of rotations for the two lower amphidromic systems are the reverse of those for $\beta = 14$.

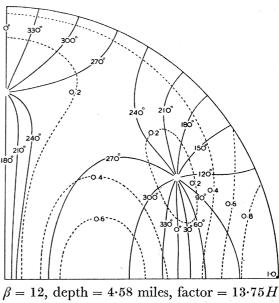
The charts for $\beta = 15$ and $\beta = 16$ do not show any great change, apart from the change of 180° due to passing through the critical value, and the chart for the critical value $\beta = 15.62$ does not differ much from either of those for $\beta = 15$ and $\beta = 16$. For $\beta = 17$ the only significant change is towards the development of a new system near the boundary, which is seen developed for $\beta = 18$. A change near the central meridian is of interest, but very little light can be shed on the mechanism of the change, except that it would appear as though both points had first moved together, as is indeed suggested by a comparison of positions for $\beta = 16$ and $\beta = 17$, and that the resulting system had then moved away from the central meridian. Probably a consideration of the zero-lines of ζ_1 and ζ_2 will throw light on this movement.

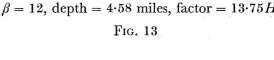
Between $\beta = 18$ and $\beta = 19$ the lowest amphidromic point for $\beta = 18$ appears to go out at the equator, leaving two systems only in the quadrant, and these two systems become more evenly spaced for $\beta = 20$.

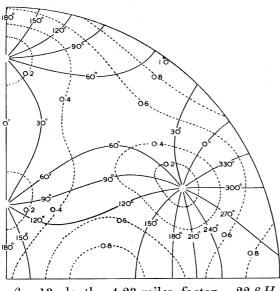
It is noticeable that while there is in general an increase in the number of amphidromic systems as β increases, yet this is not a simple function of β , as is seen from the apparent simplification for the systems from $\beta = 18$ to $\beta = 19$ or $\beta = 20$. It will probably be found that the complexity of some of the cotidal systems is due to the merely incidental approach of the zero-lines in ζ_1 and ζ_2 .

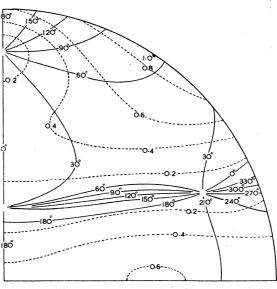

The smallest depth for which illustrations have been provided ($\beta = 20$, depth = 14,520 ft.) is about the average depth of the Pacific Ocean, but it is clear, in view of the rapid changes in the tidal charts with changes in depth, that none of these charts can be directly applied to an actual ocean. Such is not their function, but it is hoped that a study of the charts in a further memoir will yield principles which can ultimately be confidently applied to the tides in such an ocean as the Pacific.

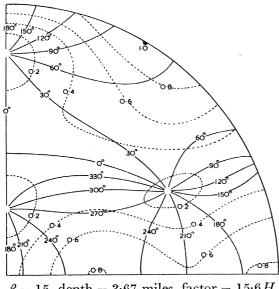

Acknowledgements

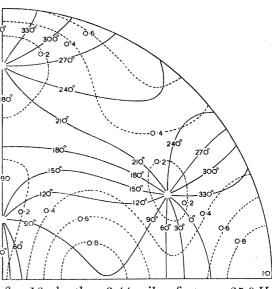

The author is greatly indebted to the staff of the Liverpool Observatory and Tidal Institute, particularly for the assistance rendered by Miss A. Ainsworth and Miss M. M. Gill in connexion with the numerical work.

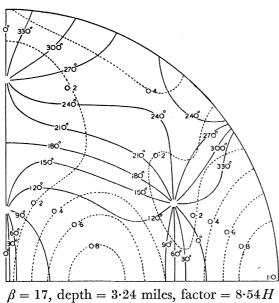

References

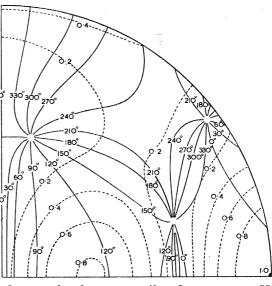

Doodson, A. T. 1936a Philos. Trans. A, 235, 290-333. — 1936b Philos. Trans. A, 235, 334-42. Proudman, J. 1936 Philos. Trans. A, 235, 273-89.

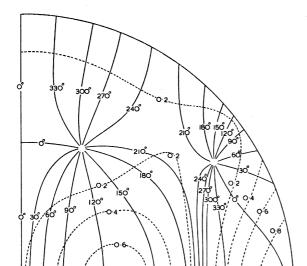


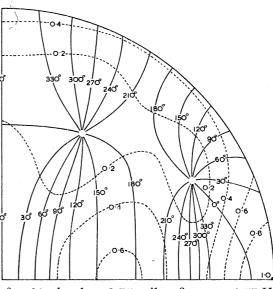



 $\beta = 13$, depth = 4.23 miles, factor = 22.6HFig. 14


 $\beta = 14$, depth = 3.93 miles, factor = 9.7 HFig. 15


 $\beta = 15$, depth = 3.67 miles, factor = 15.6HFig. 16


 $\beta = 16$, depth = 3·44 miles, factor = 25.9HFig. 17


 $\beta=17,$ depth = 3·24 miles, factor = $8\cdot54H$ Fig. 18

 $\beta = 18$, depth = 3.06 miles, factor = 6.03 HFig. 19

 $\beta = 19$, depth = 2.89 miles, factor = 5.57 HFig. 20

 $\beta = 20$, depth = 2.75 miles, factor = 6.57 H

Table I.
$$p_{-r}^n = \Pi_{-r}^n + \sum_{s,m} \beta_{-r,-s}^{n,m} i p_{-s}^m$$

The table of coefficients of ip_{-s}^m may be derived from Table V for the diurnal case, by multiplying the entries by $-\frac{1}{2}$, and omitting the group of coefficients for n=0.

Table II.
$$ip_{-r}^{n} = i\Pi_{-r}^{n} - \sum_{s,m} \beta_{-r,-s}^{n,m} p_{-s}^{m}$$

The table of coefficients of p_{-s}^m may be derived from the coefficients of $i\Pi_{-s}^m$ in Table I for the diurnal case, by multiplying the entries by $-\frac{1}{2}$, and omitting the group of coefficients for m=0.

Table III.
$$\Pi_{-r}^n = \sum_{s,m} \beta_{-r,s}^{n,m} i p_s^m$$

The table of coefficients of ip_s^m may be derived from Table III for the diurnal case, by multiplying the entries by $\frac{1}{2}$, and omitting the group of coefficients for n = 0.

328

A. T. DOODSON

Table IV.
$$i\Pi_{-r}^n = -\sum_{s,m} \beta_{-r,s}^{n,m} p_s^m$$

The table of coefficients of p_s^m may be derived from Table II for the diurnal case, by multiplying the entries by $\frac{1}{2}$, and by adding the following group:

				n =	= 1		
m	S	r=2	4	6	8	10	$\overline{12}$
0	2	1804	$\boldsymbol{2421}$	- 691	353	-219	150
	4	-3315	1001	2672	-859	471	- 305
	6	1636	-3227	693	2772	- 944	536
	8	-1152	1510	-3176	530	2825	-994
	10	901	-1056	1440	-3143	429	2859
	12	- 743	828	- 998	1395	-3121	360

Table V.
$$p_r^n = H_r^n + \frac{\beta}{\lambda_r} \Big\{ p_r^n + \sum_{s,m} (-\beta_{r,s}^n) i p_s^m + \sum_{s,m} (-\beta_{r,-s}^n) i p_{-s}^m \Big\}$$

The table of coefficients of (β/λ_r) ip_s^m may be obtained from the entries in the upper half of Table VII for the diurnal case, by changing the sign, and by adding the following group:

				n =	= O		
m	S	r=2	4	6	8	10	$\overline{12}$
1	1	4193	-1712	1118	-837	671	-560
	3	1067	1471	-569	373	-282	229
	5	– 167	737	$\bf 892$	-334	217	-164
	7	59	- 150	558	640	-234	151
	9	- 28	61	-128	448	498	-180
	11	15	-31	56	-111	$\bf 374$	408

The table of coefficients of (β/λ_r) ip_s^m is identical with the lower half of Table VII for the diurnal case, with the following additional group:

				n	= 0		
m	s	$\widetilde{r}=2$	4	6	8	10	12
1	2	-1804	3315	-1636	1152	- 901	743
	4	-2421	-1001	3227	-1510	1056	- 828
	6	691	-2672	-693	3176	-1440	998
	. 8	-353	859	-2772	- 530	3143	-1395
	10	219	-471	944	-2825	-429	3121
	12	-150	305	- 536	994	-2859	- 360

Table VI.
$$ip_r^n = i\Pi_r^n + \frac{\beta}{\lambda_r} \left\{ ip_r^n + \sum_{s,m} \beta_{r,s}^{n,m} p_s^m + \sum_{s,m} \beta_{r,-s}^{n,m} p_{-s}^m \right\}$$

The table of coefficients of $(\beta/\lambda_r) p_s^m$ may be obtained from the entries in the upper half of Table VI for the diurnal case, by changing the sign, and by adding the following group:

				n =	= 1		
m	s	r=1	3	5	7	9	11
0	2	4193	1067	-167	5 9	- 28	15
	4	-1712	1471	737	-150	61	- 31
	6	1118	-569	892	558	-128	56
	8	-837	373	-334	640	448	-111
	10	671	-282	217	-234	498	374
	12	- 560	229	-164	151	-180	408

The table of coefficients of $(\beta/\lambda_r) p_{-s}^m$ is identical with the lower half of Table VI for the diurnal case, with the omission of the group for m = 0.

							Co	efl	fici	en	ts	of	Π_{-}^{n}	n -8		ı				Coe	eff	icie	eni	ts o	of i	II	m —8			
									1	67	- 2	-14	ا بت	4	1.0024												53	68 –	252 287	235
		y = 0	6						ō	က ၂	- 18	- 2	9	1.0012	4												-95	283	265 89	78 -
									1 2 -	_ 20	ი 1	61	1.0024	9	1 5								-	- 1			291	283	- 87 - 64	4 0
			[=	9	က ၂	67	- 2	-16	9	- 4	4	1.0030	23	- 2	- 14	-				- -		- 48	65	-101	277	255	- 56	$\frac{95}{2}$	-271	7.47
I^m_{-s}		= 4	6	∞ 1	4	1	- 23	1	∞ 1	5	1.0019	4	ا ع	- 18	1	-	- 1		٦ ١			92	-121	331	300	- 91	104	-307	- 288 - 288	88
li gna i	imals,	и	7	12	ا 5	- 34	 -	2	12	1.0056	5	- 4	- 20	د	2	I	1	- 2	- -			-145	402	360	-108	58	-344	-335	103	oc –
IS OF H_{-}^{n}	ces of dec		ار ين	-22	- 49	ا ت	က	က ၂	1.0058	12	∞ 	9	7 -	10	4	- 1	1	1				477	428	-125	99	-45	-365	$\overline{116}$	- - - - -	41
Table VII. \hat{p}_{-r}^n in terms of H_{-s}^m and iH_{-s}^m	(Coefficients to 4 places of decimals,		[1]	%	4	က ၂	က	1.0034	် (က	.	- 2	- 16				49	- 56	71	-106	288	704	50	89 -	103	-284	-261				
VII. p'	(Coefficie	,	6	12	1	က	1.0024	က	ಣ	- 2	- 23	- 2				- 73	91	-132	352	$\frac{316}{96}$	- 90	- 80	125	-343	-311	94		Н,	-	
TABLE		n = 2	7	- 18	∞	1.0079	က	က 	.l .c	- 34	_ 2	2				123	-176	451	395	-117	03	155	-429	-384	115	- 62	1	—		
		,	5	33	1.0132	∞	ا 5	4	-49	ا ت	4	ا ئ				-255	627	522	-149	% <u>7</u>	0c –	-555	-498	145	77 -	48	. 2	П		
-			r=3	1.0205	33	- 18	12	,∞ -	-22	12	∞ 	9				992	752	-199	100	-61	42	999 -	189	96 –	59	- 40				
			S	က	<u>ب</u>	7	6	11	10	7	6	11	7	6	11	2	4	9	∞	10	12	4	9	∞	10	12	9	∞ (0I 61	17
			m	2 1					4				9			1						က					ro			

329

Table VIII. $i\dot{p}_{-r}^n$ in terms of $i\Pi_{-s}^m$ and Π_{-s}^m

A. T. DOODSON

						\mathbf{C}	oef	fici				iI ∞	-	••		· L	1			(loc	effi	cie					••	
									ı	415	1	<i>ح</i>	•	1	1~	1.0014							41	- 56	88	-247	48	- 82 - 82 - 82	200
īĠ.	10							ا ت	က	-	-17	ا ع	9 -	5	1.0031	7					_		-63	103	-288	-271	- 87	265 555	404
n = n	\int_{∞}							7		-24	_ 2	က	6	1.0039	īΟ	9 -			_ 1	-	Π		116	-335	-307	92	283	583 80	- oa
	9							II -	-30	- 4	က	ا ئ	1.0036	6	9 –	9			2	_			-365	-344	104	- 56	291	- 95 65	ဇဂ
	12	ж І	အ	က ၂	က	က 	6 –	∞ 	9	ا ت	9	1.0016	ري ا	က	ස 	∞ 		- 40	48	-62	94	-261	- 42	58	- 91	255			
	10	10	- 4	67	1 2	-20	ا ئ	6	- 5	4	1.0038	9	က	- 2	_ 17	က ၂		59	_ 77	115	-311	-284	99	-108	300	277			
(Coefficients to 4 places of decimals) $n=3 \label{eq:normal}$	\int_{∞}	-15	က	- 3	-31	_ 2	23	-12	7	1.0056	4	ا بو	- 4	-24	- 2	က		96 —	145	-384	-343	103	-125	360	331	-101	- 1		
places of	9	24	∞ 1	<u> - 51</u>	ee –	67	- 2	20	1.0084	7	ا تو	9	- 30	4	က	ا ئ	-	189	-498	-429	125	89 –	428	402	-121	65	- 1		
ients to 4	4		<u>-</u> 87	- 1	4	် (၂)	က	1.0102	20	-12	¹ ලා	ж 	- 11	<u> </u>	 2	τĊ		999 -	-555	155	08 -	50	477	-145	92	- 48			
(Coeffic	12	∞	- 3	က	භ 	က	1.0009	က	- 2	63	မေ	6 -						42	_ 20	63	- 96	264							
	10								છ	- 23	-20	ಣ 						- 61	78	-117	316	588				_			
. =	8	15	1	ಣ	1.0032	63	က ၂	4	ا ئ	-31	_	က						100	-149	395	352	-106		-	_ _				
= "	9	-25	∞	1.0054	က	- 2	က		- 51	ಣ 	23	ე						-199	522	451	-132	71	- 2	- 2					
	4	54	1.0098	∞	 5	4	က 	- 87	& 	īĊ	- 4	က						752	627	-176	91	- 56	- 4	П	T -				
	r=2	1.0106	54	-25	15	-10	∞	- 48	24	-15	10	∞						992	-255	123	- 73	49		П	<u> </u>				
		1 2	4	9	∞	10	12	3 4	9	œ	10	12	5 6	œ	10	12		23	70	~	ග	П	4 5	7	6	Π	6 7	6 [[77

Coefficients of p_s^m

Table IX. p_{-r}^n in terms of p_s^m and ip_s^m

TIDES IN OCEANS BOUNDED BY MERIDIANS

331

Coefficients of ip_s^m

												.110	.10.	1113	32		20	113	-27	- 34	23	27	-112				•	20	CIII	_				Ps H	-610	892	-2583	-1615
	u = 6	6													42	28	138	- 37	-29	45	14	-143	- 26							-	-2	ರ	0 1	e-	1092	-2746	-1915	1629
															58	148	-19	-26	29	- 40	-155	-29	28	-						0	9	က	က	1	-3335	-2289	1425	- 749
			1						-25	17	-16	15	110	-52	1 5	9	_ 7	99 –	- 80	36	-24	-27	119	-1	-1	61	-2	າວ	0	313	-438	786	-2341	-1091	-377	607	-1529	1128
nals)	= 4	6	0						35	-24	19	140	-75	-25	9		- 93	-109	6	- 49	-15	156	28	2	1	က 	7	_	4-	-492	794	-2401	-1308	1881	609	-1403	1376	2694
aces of decir	u =	7	1	- 1	- 1	1			- 54	35	174	-79	-21	26	∞	-135	-166	10	- 10	47	183	35	- 34	-2	-3	10	Т	9-	23	931	-2538	-1632	1804	688 -	-1302	1790	2811	-1072
(Coefficients to 4 places of decimals)		مدا	_ 1	- -	-				06	205	- 58	- 35	30	_ 32	-187	-268	18	-16	15	129	72	-54	48	23	14	67	%	က	٦	-3057	-2101	1616	-830	598	2752	2909	-1064	685
(Coeffici			- 16	12	- 11	13	142	-1111	6	-10	7	9 –	-32	- 44	- 30	18	-15	- 56	111					- 114	212	- 380	719	-2125	- 549	175	-331	624	-1713	559	-1	-1	က	-3
		6	22	- 14	12	182	-160	-27	-13	13	- 11	-46	-61	7	42	- 23	- 59	154	23					170	-334	685	-2121	-663	2112	-266	563	-1611	677	2514	0	4	_4_	9-
	n = 2	7	- 34	21	232	-202	-17	22	20	- 21	02 -	66 —	11	- 10	- 65	- 43	202	23	-26					- 287	637	-2133	-837	2113	- 976	465	-1458	867	~ 2612	-1066	က		6-	က
		5	62	305	-259	- 23	22	- 28	- 36	-115	-187	24	-20	18	62	264	45	- 37	37		-			594	-2149	-1128	2099	-1003	703	-1165	1202	2757	-1118	749	-12	-16	īO.	1 2
		r=3	380	-319	- 58	46	- 41	43	-220	-454	72	-57	47	-40	194	146	-103	85	-72					-2308	-1700	2029	-1020	722	-567	1997	2995	-1187	788	-605	∞ 	က 	4	4-
		s m	0 2	4	9	œ	10	12	2 2	4	9	œ	10	12	4	9	œ	10	12	9 9	∞	10	12		က	າວ	_	6	11	3	ιĊ	7	6	11	5 5	7	6	11

332

A. T. DOODSON

		Coefficients of p_s^m	Coefficients of ip_s^m
	2	$\begin{array}{c} 2\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2422\\ 2422\\ 1250\\ 1250\\ -1298\\ \end{array}$	- 30 - 25 - 25 - 33 - 6 - 8 - 50
# {	10	-1 -1 -5 -5 -849 -849 -2503 1478 -1804 -1804 -661 -1395 -1560	34 - 24 - 21 - 37 - 37 - 91 - 114
n	∞	2 -7 -7 -2 -1023 2659 1791 -1710 851 1348 -1979 -2832 1056	- 48 32 32 154 - 51 - 51 - 127 - 153
	ල	$\begin{array}{c} -1 \\ -9 \\ -3 \\ -2 \\ 0 \\ 3220 \\ 2208 \\ 2208 \\ -2208 \\ -1506 \\ -1506 \\ -2946 \\ -2892 \\ -2$	72 174 174 - 32 - 32 - 34 - 157 - 220 - 12
(15 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	172 - 251 414 414 - 756 2218 757 - 220 353 - 631 - 772 - 631 - 772	18 -16 -19 -19 -28 -46 -7 -7 -31 -31 -31
ipm	0 1 - 1 - 1 1 4 4 8 L 73	- 252 391 - 740 900 - 2014 - 2014 - 587 - 587 - 924 - 2574 - 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{cases} p_s^m \text{ ANI} \\ \text{decimals} \end{cases}$ $n = 3$	8 12 18 18 18 18 18 18 1	408 - 725 2282 1104 - 1984 - 547 1427 - 2662 -	34 - 25 - 19 - 101 - 25 - 12 - 12 - 109 - 109 - 175 - 24 - 24 - 24 - 31
TERMS OI	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2371 1423 1423 -1926 -937 - 659 1246 -1540 -2788 1092 - 721 8	- 57 - 41 195 - 118 - 21 - 26 - 134 - 134 - 181 - 15 - 16 - 16 - 17 - 18 - 1
LE X. ip_{-r}^n IN TERMS OF p_s^m ANI (Coefficients to 4 places of decimals)	4 1 8 4 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 2796 \\ 1950 \\ -1767 \\ -1767 \\ -2462 \\ -2462 \\ -2938 \\ -2938 \\ -2938 \\ -2938 \\ -277 \\ -727 \\ -727 \\ -277 \\ -$	111 241 - 110 - 41 - 35 - 35 - 218 - 342 - 342 - 342 - 28 - 34 - 3
Table X. ip_{-r}^n in terms of p_s^m and ip_s^m (Coefficients to 4 places of decimals)	12 150 -307 538 -997 2864 358	84 84 858 858 862 1836 1 1836 1 1 255 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19 16 16 17 18 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10
Tai	$ \begin{array}{r} 10\\ -220\\ 475\\ -948\\ 2833\\ 429\\ -3126 \end{array} $	- 121 - 615 - 615 - 1773 - 303 - 2393 - 4 - 4	24 - 18 - 15 - 119 - 119 - 171 - 172 - 172
-	8 355 - 866 2785 -3152 1397	190 1674 1674 1674 1028 1028 1028 1038 1038	- 36 - 156 - 194 - 104 - 104 - 169 - 169 - 169
" " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 6 \\ - 697 \\ 2695 \\ 691 \\ -3190 \\ 1445 \\ -1000 \end{array}$	- 353 - 492 - 2532 - 2532 - 725 - 4 - 4 - 4 - 5 - 3	- 1
	$egin{array}{c} 4 \\ 2454 \\ 996 \\ -3252 \\ 1517 \\ -1059 \\ 829 \end{array}$	$\begin{array}{c} 1030 \\ -2677 \\ -2677 \\ -1136 \\ -772 \\ -598 \\ -9 \\ -9 \\ -9 \\ -9 \\ -3 \end{array}$	-126 -273 -125 -125 -126 -126 -126 -127 -126 -127 -126 -127 -127 -127 -127 -127 -127 -127 -127
	$ \begin{array}{c} r = 2 \\ 1839 \\ -3353 \\ 1640 \\ -1151 \\ 898 \\ 738 \\ \end{array} $	1062 -1062 -3006 -3006 - 861 - 662 - 541 - 7 - 8 - 8	- 245 - 99 - 193 - 144 - 116 - 104 - 160 - 160
	2 0 2 4 4 8 8 10 10 10 10 10 10 10 10 10 10 10 10 10	2 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5

333

Table XI a (see also XI b). $(p_r^n - \Pi_r^n)$ in terms of p_s^m and ip_s^m (Coefficients to 4 places of decimals)

									C	oel	ffic	ie	nts	of	b	m								Í				Со	eff	icie	en	ts o	of a	ib^m				
	12	-182	148	-165	$\frac{213}{1}$	715	-1043	-488									200	444	-635	0	•	0	-	-405	139	99 –		16							12	4 1;	- 15	7 8
	10	194	-129	$\frac{120}{5}$	930	-1575	400	535	-321	267	922	7743	678	-363	210	103	010	606 –	713	-1	0	2	-1	483	-159	29	-	-238	- 353	-718	405	-368	$\frac{489}{100}$	193	1 2	$-\frac{22}{\tilde{s}_{2}}$	92	4
n=2	%	-233	142	066	-1622	557	219	-645	367	863	7653	922	380	431	X		#06-	868	213	1	23	-2	-	009-	186	- 51	-270	-450	202	913	-575	662	205	28	6 -	$\frac{43}{1}$	มรู	-45
= u	9	307	1005	-1579	515	124	-172	838	592	7667	863	267	-326	-450	678	2001	188 188	185	-199	0	- -	- I	1	797	-220	-295	-618	293	-201	-1282	1018	187	92	-115	37	-10	09 -	19
	4	846	-1392	347	159	-144	162	-478	7790	592	367	-321	334	19.4	6901	1002	281	-231	220	၂	-2	Π	-1	-1245	-208	-972	481	-333	259	2257	18	284	-254	222	-49	- 70	18	9
	61	- 93	-336	462	-358	296	-267	8888	-478	83 83 83 83 83 83	-645	2000	- 488	818	611	199	-433	345	-306	-1	0	0	0	2374	-2511	1300	968 -	691	-564	-2315	1326	-912	208	-583	-35	-10	16	-19
	12	-260	218	-244	317	692	8593	-267	162	-172	919	004	-1043		- 	- 1 0	0	<u> </u>	બ					- 549	230	-173	165	-216	414	-12	∞ 	13	- 30	20				
•	10	272	-186	172	1053	7771	692	296	144	194	1 12 1 12 1 12	2 C C C C C C C C C C C C C C C C C C C	715	-		- 	-	4	12					664	-291	240	-288	526	410	īΟ	21	- 44	45	26				
0 =	∞	-322	201	1073	8692	1053	317	858	150	2 2 2 2	1699	7707	913°	6	၈ ()	9	ဂ	-					834	394	-400	670	500	-164	61	- 50	80 80	36	- 63				
=u	9	412	98.0 78.0	7744	1073	179	-244	469	247	1570	000	086	165 165	7	₩ (x 0 ·	- 4	Π	_					1197	-647	660 	629	$-\frac{1}{200}$	06	- 29	8	<u>\$</u>	- 87	38				
	4	596	7963	586	201	186	218	338	1200	- 1592 1005	143	197	- 129 148	7	40	ا ن	-5	4	က 					1001	1481	1401	- 247	111	65	96	89	-125	56 56	- 37				
	r=2	5000	2000 2006	419.	355	070 070	- 260 - 260	60 1	00 040	040 101	700	- 255 - 255	194 109	101	x 0 !	2-	4	e:	ಣ					4574	1774	11 4 0	 	- +3	133	65	195	3.8	3 <u>~</u>	$\overline{10}$				
	s w	· ·		H 65	o ox	2	16	; ;		# 4	o 0	o ç	01	7 .	4	9	œ	10	2	9		9	12	-	т 6 Т	o 14	1 C	- 0.	ÎI	65))	-10	- G	Î	ĸ	9 1-	· 6:	`

334

A. T. DOODSON

										\mathbf{C}	oei	ffic	ie	nts	of	p_s^n	ı							1				Co	effi	icie	nts	of	ip	m s		
		12							C		1	-	-1		424	-306	289	948	-456	-461	319	134	8933).		-16	42	7	-733	395 969	- 203 - 2
	9 =	10							0	П	-	- 2	2	0	-478	321	1172	969 -	-170	517	48	8629	134						11	- 16 - 16	54	က	- 26	906	-481_{06}	90 - 597
	n	∞							0	-2	-3	2	0	0	626	1307	-480	-164	335	-465	8545	48	319						υ	9	16	- 34	12	-1229	3/4	- 858 556
ABLE XI A		9							1	-13	0	П	-1	0	1136	215	-483	458	-451	8892	-465	517	-461						91	44	- 28	4	10	1939	-1623	-848
Table XI b (continuing Table XI a)		12	က	-3	_	- - -	-2	83	-306	220	-199	213	713	-632	763	-538	531	443	8501	-451	335	-170	-456	81-) -	16	-20	& 30 1	691	-285	$\overline{172}$	- 84	-127	-706	437 900	- 555 471
LE XI B (CC		10	-3	4	-1	၉၂	4	7	345	-231	185	868	-959	44	-815	512	582	7605	443	458	-164	969 -	948	2	7	-28	54	$-16 \\ -26$	_741	325	-163	-130	-482	873	086-1 086-1	99 99
TAB	n = 4	œ	4		-4	9	<u>-</u>	0	-433	281	991	-904	103	230	886	285	7450	582	531	-483	-480	1172	289	-19	$-\overline{22}$	72	-14	88 - 86 -	986 986	-381	- 74	-652	385	-1153	953	215
		9		က္ '	∞	0	-1	Н	611	1062	-678	- 28	210	-229	-791	7380	285	512	-538	215	1307	321	-306	17	83	9 -	-50	27 - 9	-1316	161	-979	587	-427	1811	- 209 - 435	±55 -371
		r = 4	& 	4	4	ရ	П	-	816	124	-450	431	-363	341	8016	-791	886	-815	763	1136	626	-478	424	37	51	-49	12	2 0	2165	-2003	1215	- 894	713	-2032	1274	752
		s u	0 2	4	9	∞	10	12	2	4	9	œ	10	12	4 4	9	œ	10	12	9 9	œ	10	12	1 1	က	ō	<u>-</u>	ი [· ·		7	o ;		تن بن ت	- 0	11

Coefficients of p_s^m

TIDES IN OCEANS BOUNDED BY MERIDIANS

Coefficients of ip_s^m

Table XII. $(i \rho_r^n - i \Pi_r^n)$ in terms of p_s^m and $i \rho_s^m$

								CU	CII	ICI	CII	is '	OI.	p_s									1				O.	JCI	IICI	CII	is ()I i	p_s			
								-19	9 -	19	-45	7 ,	18	752	-371	215	99	471	-848	556	-597	- 2	-	- 1	07	-1	-2	_	406	$-\frac{292}{25}$	273	804 710	- 518	-975	178	8405
	- 5	6						16	18	09-	S1 5	36	-15	-930	435	- 1	638	-388	1081	-858	96	-263		o 0	1 23	-2	က	0	-469	311	1076	0//-	711-	$\frac{1042}{154}$	124 7444	178
	= u	7						-10	- 70	-10	2 8	77.	4	1274	-269	933	-586	437	-1623	374	-481	395		ം ന 	က 	က	0	<u> </u>	630	1196	_ 560 	- 120 - 514	91 4	-861 787	194	723
		5						-35	- 49	37	ი 	71 ,	12	-2032	1811	-1153	873	-200	1939	-1229	906	-733		4	٠,	23	-1	_	1000	181	- 478 773	455 495	- ±55	$\frac{7760}{691}$	- 801 1049	-975
		(^E	10	/2 38 	် (၂)	$\frac{26}{26}$	50	-583	222	-115	82.5	193	374	713	-427	385	-482	-127	10	12	- 26	23	949	351	-172	187	626	689 —	704	-487	483 5	034 7770	0040	-435	314 119	-519 - 519
		6	18	96 72	- % -	$\frac{2}{45}$	- 30	708	-254	95	205	489	-260	-894	587	-652	-130	- 84	4	-34	က	42	086	910	15.9	794	-1033	139	-772	468	889 1	0897 0897	954	455	120 770	864
(Coefficients to 4 places of decimals)	n = 3	-1	35	-125 - 77	+ 70 ∞	- 44	13	-912	284	187	$\frac{662}{662}$	-368	253	1215	-979	- 74	-163	172	- 28	16	54	- 16	970	1 1 1 1 1 1	607 800 800	-1004	202	199	096	410	7573	889	483	-478	096 -	273
places of		ō.	-125	7.9 80	ا 00 تو	$\frac{2}{21}$	∞ 	1326	18	1018	-575	405	-319	-2003	161	-381	325	-285	44	61	- 16	4	n n	080	000	23	179	-194	-706	7569	410	468	-487	181	1196	-292
ents to 4		^ش	$-\frac{65}{2}$	96 6	87 °	íro	-12	-2315	2257	-1282	913	-718	280	2165	-1316	936	-741	621	31	νĊ	- 11	15	n - 7	1±0	404	412	-336	304	8391	-706	096	-772 - 52	704	1000	630	-469 -406
(Coeffici		[]	23	- - - - -	- 164	410	414	-564	259	-201	205	-353	-205	- 10	6	22	-26	∞ 					176	147 —	180	202	339	9349	304	-194	199	$\frac{139}{266}$	- 689	-	 -)
		6	- 43		1 200 200 200 200 200	526	-216	691	-333	293	-450	-238	16	61	27	- 38 - 1	- 16	39					0	177	- 203 156	468	8912	339	-336	179	202	-1033	979	7	0	ro e7
	1	7	87	-247_{290}	629 670	-288	$\overline{165}$	968 –	481	-618	-270	- -	58	12	- 50	14	54	- 20					1	000 	242 730	8893	468	205	412	73	-1004	794	187	61	က	<u>-</u> - 2
	n = 1	70	-245	840 899	325 700	- ±00 240	-173	1300	-972	-295	- 51	67	99 –	- 49	9	72	- 28	16						440	203	432	156	-180	-404	-820	860	159	-172	-	က (၂	
		က	1146	1481	- 047 904	- 291	230	-2511	-208	-220	186	-159	139	5	8	- 22	Π	4					1.00	- 231	9208 969	242 242	-203	198	42	898	265	$-\frac{212}{252}$, 198	4-	က (
		r = 1	4274	-1801	1127	-054 664	-549	2374	-1245	797	009-	483	-405	37		61	2 ×	18					0070	9430	- 231 440	-335	271	-241	541	551	-372	583 5	-249	-1	0	10
		s m	0 2	40	စ္	° <u>-</u>	12	2		9	∞	10	12	4	, ₆	ooc	9	$1\overline{2}$	9) oc	9	$1\overline{2}$,	т с	n u	-1 C	. G	11	ლ ლ	က	7	6	11	5 5	-	9 11
,	Vol.	. CC	XX	X	VII	•	A.																											4	1 3	

_	
DD)	
OI	
\hat{r}	
3. Expansions for p_r^n (r even) and ip_r^n (r odd)	
D O	
AN	
(1)	
EVEN	
E	
(r)	
p_r^n	
p_r^n	
ΗC	
NS	
ANSIONS	
AN	
Expa	
田	
B.	
XIII	
r+1	
ABLE	
TABLE XII	
T	
N	
∀ ;	
Ξ	
ABLE XIII A A	
X	
3LE	
H	

(Coefficients to 4 places of decimals)

(a) Coefficients of H/h

(b) Coefficients of ip_1^1

			A.	I. DOOI	JSON			
14	$-2401 \\ 359$	$-191 \\ 99 \\ -62$	-1465 201 -144 77 -50	-185 -46 -15 -15 -6		$\begin{array}{r} 308 \\ -102 \\ 52 \\ -33 \end{array}$	$\begin{array}{c} 421 \\ -110 \\ 58 \\ -36 \end{array}$	40 11 2
12	$\begin{array}{c} -1805 \\ 320 \end{array}$	$-159 \\ 83 \\ -51$	$-1153 \\ 190 \\ -117 \\ 64 \\ -40$	- 92 - 31 - 9 6		253 - 85 - 43 - 27	$\begin{array}{r} 327 \\ -90 \\ 47 \\ -29 \end{array}$	19 10 1 0
10	$-1345 \\ 272$	$-128 \\ 67 \\ -41$	-884 171 -94 51	- 19 - 19 - 5 - 4	- 1	$\begin{array}{c} 200 \\ -69 \\ -35 \\ -22 \end{array}$	250 73 23	$\begin{array}{c} 9 \\ 7 \\ 0 \\ -1 \end{array}$
$\begin{cases} \infty \end{cases}$	$-977 \\ 219$	$-100 \\ -52 \\ -32$	-654 -654 -72 -39 -25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1	$\begin{array}{c} 150 \\ -54 \\ 27 \\ -17 \end{array}$	$ \begin{array}{r} 186 \\ -57 \\ 28 \\ -18 \end{array} $	1 4 5
9	$\begin{array}{c} -672 \\ 164 \end{array}$	- 138 - 23	$\begin{array}{c} -455 \\ 110 \\ -53 \\ -28 \\ -18 \end{array}$			$\begin{array}{c} 106 \\ -39 \\ 20 \\ -12 \end{array}$	$ \begin{array}{c} 131 \\ -42 \\ 20 \\ -13 \end{array} $	c) c)
4	-414 - 109	- 48 - 25 - 15	$ \begin{array}{r} -283 \\ 75 \\ -34 \\ 18 \\ -11 \end{array} $			$\begin{array}{c} 67 \\ -25 \\ 13 \\ -8 \end{array}$	$\begin{array}{c} 82 \\ -27 \\ 13 \\ -8 \end{array}$	percel percel
67	$\begin{array}{c} -193 \\ 54 \end{array}$	$\begin{array}{ccc} - & 24 \\ 12 \\ - & 7 \end{array}$	-132 38 -17 9 0	1 0 2		$\begin{array}{c} 32 \\ -12 \\ 6 \\ -4 \end{array}$	$\begin{array}{c} 39 \\ -13 \\ 7 \\ -4 \end{array}$	
14	-103 -22	- 4-21-	109 3 - 1	9 10		-541 123 -57 32	$\frac{30}{1}$	
12	-63 - 13	4 2 1	73	 		-484 119 -57	$\frac{22}{1}$	
10	86 – 9 –	- 5 3	46	ı		-440 115 -56 30	$-\frac{15}{1}$	
∞	$\begin{array}{c} -24 \\ -7 \end{array}$	2	29	1		-404 -111 -55 -30	$\frac{10}{1}$	
9	-15 - 4		18	ı		$-373 \\ 108 \\ -53 \\ 29$	1 5 7	
4	8 7 7	_	10			$-347 \\ 105 \\ -52 \\ 29$	- - - -	
$\beta = 2$	3		4			$-325 \\ 103 \\ -51 \\ 28$	 61 61	
r	4 9	$\frac{10}{2}$	4 6 8 10 12	4 6 10 12	$\begin{array}{c} 6 \\ 8 \\ 12 \\ 12 \end{array}$	5 7 9	5 7 11 11 11	5 7 9
и	0		c1	4	9	П	က	10

Table XIII c and Table XIII d. Expansions for p_r^n (r even) and ip_r^n (r odd) (Coefficients to 4 places of decimals)

	14	-110	188	- 82	45	- 31	-843	332	-144	78	-52	918	204	- 76	43	-29	40	21	8	G	1034	-275	129	- 73	908	-217	118	- 70	86 -	62	$-\frac{12}{4}$
	12	-156	156	89 –	37	-25	-586	280	-120	99	- 44	200	183	89 –	37	- 23	28	15	-5	က	795	-228	107	-61	672	-189	100	- 58	89 -	38	∞ က
s of p_2^2	10	-155	125	- 55	30	-20	-414	228	86 –	54	-36	536	156	- 58	31	-20	18	10	က ၂	62	603	-184	87	- 49	540	-161	83	- 48	- 35	24	- 1
Coefficients of $ ho_2^2$	∞	-133	96	- 43	24	-15	-288	178	_ 77	42	-28	400	125	-47	25	-17	11	9	-2	П	446	-143	67	- 38	414	-131	99	- 38	-25	14	⊣
(<i>q</i>)	9	-102	71	-32	17	- 11	-192	130	-57	31	-20	282	93	- 36	19	-12	9	က	7		311	-104	49	- 28	298	86 -	49	- 28	- 13	7	
	4	69 –	46	-21	11	2 -	-115	84	- 37	20	- 13	179	61	-24	12	ж -	23				194	- 67	32	- 18	191	99 –	32	- 18	_ 1	က	
	01	-34	22	-10	9	က 	-52	41	-18	10	9 –	85	30	-12	9	<u>+</u>	П				92	-33	16	6 –	92	-33	16	6 –	ಣ 		
	14	697	210	-54	33	-25	1222	182	-29	19	-13	16	47	14	1	က					-225	37	-13	9	-60	11	∞ -	ĭO	က 	4	
	12	555	167	-49	$\frac{58}{2}$	-19	905	140	-29	18	-12	7	27	6	၂	63					-166	58	-10	က	-52	6	9 –	က	- 2	က ၂	
$i ext{ of } p_2^0$	10	428	130	-43	24	-16	99	105	-26	16	-11	က	15	9	- 2	_					-121	21	∞ 	က	-44	_	4	63	-	- 2	
Coefficients of $ ho_2^0$	œ	316	97	-35	50	-14	474	77	-22	14	6 -	1	∞	ಣ	-						- 88	16	9 -	ળ	-36	лO	- 2			- 	
(c) C	9	220	69	-26	15	-10	323	53	-18	10		0	က	ઝ							-61	Ξ	- 4	67	-26	4	- 2	-	o,	-	er.
	4	136	1 3	<u>8</u> :	0	<u> </u>	197		-12	-	- -	_ 1		_							-37	_	ا ا	—	-17	67	, П	_			
The state of the s	$eta^{'}=2$	64	$\frac{21}{1}$	ි 	9	က 	91	16	9 -	4	- 2	-									-17	ഹ ,	- П		6 	_					
	r	40	9	χo ;	01	12	4	9	∞	10	12	4	9	x	01	12	9	20	01	12	ಸಂ	-	ာ ှ		ro i	<u>-</u>	ۍ ج	I	က ၊	- 0	11
	u	0					© 1					4					9				-				က				າຕ		43-2

Table XIII e and Table XIII f. Expansions for p_r^n (r even) and ip_r^n (r odd)

(Coefficients to 4 places of decimals)

	14	-864	45	–	- 2	4	3775	-619	275	-144	93	4468	-590	324	-172	108	177	48	-27	20	-566	175	; £	41	-1185	464	-229	144	-134	316	-150 - 88)
	12	-409	33	_ _	- 5	က	2653	-480	215	-113	69	2963	-469	241	-127	81	114	23	-16	12	-374	186	97	37	-765	347	-170	106	113	233	-107 - 66)
of ip_3^3	10	-192	55	- 2	 	© 1	1893	-373	164	-85	52	2027	-367	177	- 93	58	70	10	8	9	956	601	40	31	-508	253	-124	77	194	168	– 76 46	2
Coefficients of ip_3^3	∞	08 -	12		-	_	1327	-283	123	- 63	38	1376	-281	129	-67	42	40	4	4-	4	174	125	37	73	-335	$\frac{28}{182}$	06 -	55	202	121	- 54 32	2
(f)	9	-24	10	_			888	-203	87	-45	27	868	-204	6	- 47	53	22	7	-2	23	117	+11-	96	97	616-	125	- 62	38	174	83	- 37 99	1
And the second s	4		_				536	-130	55	- 28	17	531	-132	57	- 30	18	10	-	-1	-	22) 	91 91	2 2	661	77	- 88 - 1	24	125	51	$-\frac{23}{14}$	+ 1
	. 61	9					245	63 - 63	26	- 14	∞	238	- 64	27	- 14	œ	က				06) - 18	01	ן יכי	 K	30	81-	11	65	24	-111	-
4	14	2584	-170	68	- 43	26	-922	30	28	- 17	12	-127	0	-17	6	 10	- 2	-	-	ı	409	#0. 1	40 7	91	689	77	- 20	14	24	17	တ က	ာ
	12	1798	-165	73	- 36	21	-538	\ \ \ \	26	-16	11	-52	11	-11	ာဝ	ر ا	0	C)		, n	407 407	0# c	 - -	105	999 99	- 20	14	6	12	10 c	1
ients of ip_3^1	10	1269	-146	09	- 29	17	-325	-16	23	- 14	6	-17	14		್ಣ	- 2	С)	4		İ	7.7 7.7	1 1	$-\frac{20}{14}$	776	± 52	- 50	13	4	×	ლ -	-
oefficients	x	88 76	-121	46	_ 22	13	861 -	- 21	19	=		C	, 1	1 1		-	-	, pass	4		7	114	34 1.0	01-	904	43	9 ×			4	01 -	-
(e) Coeffici	9	589	26 -	. . .	91	10	- 116	-21	12	χ 	, 10	9	=	; e:	· 	1					i i	53	97.	- 12 0	900	202	10 -	<u>+</u> ∞	С			
	4	354	- 69	: es	=	9	69	2 -	9	١	4	7	- ox	6	1							43		ი ყ 	0 0 5	871 90	90	9 	C	-		
	$\beta = 2$	181	37	T =	1 10	က	- 25	9 =) 1) କୀ 	୍ଦୀ	ı ıc	9 4	H	-							6T	ກ ⁻	 4°	٠ - -	10) ¥0	ာ ၈၈ 				
	٠	. 7	н «с) x	2	12		H &	ox	2	15	. 4	ዞ ແ	> 0	9	13	1 9) 0	0 2	12		<u>.</u>	<u>-</u>	ີ [1 ,	ာ ဂ	- c	e I	10	-1 c	· 6 ;	П

 θ

S

10

೧೦

Table XIV a. Sets of simultaneous equations in $ip_1^1,\,p_2^0,\,p_2^2,\,ip_3^1,\,ip_3^3$ and H/h for $\beta=1$ to 7

			•			
β	ip_1^1	p_2^0	p_2^2	ip_3^1	ip_3^3	H/h
1	-0.5268	0.2132	0.1196	-0.0123	0.0260	0.7665 = 0
	0.0711	-0.8498	-0.0017	0.0191	-0.0009	-0.4574 = 0
	0.0399	-0.0017	-0.8513	-0.0419	-0.0388	0.2633 = 0
	-0.0020	0.0096	-0.0209	-0.9231	0.0004	0.1954 = 0
	0.0043	-0.0004	-0.0194	0.0004	-0.9295	0.0002 = 0
2	-0.0500	0.4255	0.2409	-0.0260	0.0495	0.7655 = 0
	0.1419	-0.6993	-0.0033	0.0383	-0.0015	-0.4573 = 0
	0.0803	-0.0033	-0.7016	-0.0837	-0.0780	0.2623 = 0
	-0.0043	0.0192	-0.0419	-0.8460	0.0006	0.1953 = 0
	0.0082	-0.0008	-0.0390	0.0006	-0.8576	0.0003 = 0
3	0.4307	0.6367	0.3641	-0.0413	0.0705	0.7644 = 0
	0.2122	-0.5486	-0.0051	0.0576	-0.0017	-0.4571 = 0
	0.1214	-0.0051	-0.5509	-0.1255	-0.1177	0.2613 = 0
	-0.0069	0.0288	-0.0628	-0.7685	0.0008	0.1953 = 0
	0.0118	-0.0008	-0.0589	0.0008	-0.7843	0.0005 = 0
4	0.9157	0.8466	0.4893	-0.0585	0.0888	0.7633 = 0
	0.2822	-0.3976	-0.0072	0.0770	-0.0014	-0.4569 = 0
	0.1631	-0.0072	-0.3994	-0.1672	-0.1578	0.2603 = 0
	-0.0097	0.0385	-0.0836	-0.6906	0.0010	0.1952 = 0
	0.0148	-0.0007	-0.0789	0.0010	-0.7093	0.0008 = 0
5	1.4053	1.0551	0.6167	-0.0776	0.1041	0.7621 = 0
	0.3517	-0.2462	-0.0094	0.0965	-0.0007	-0.4567 = 0
	0.2055	-0.0094	-0.2466	-0.2089	-0.1985	0.2592 = 0
	-0.0129	0.0483	-0.1044	-0.6123	0.0010	0.1951 = 0
	0.0174	-0.0004	-0.0993	0.0010	-0.6324	0.0010 = 0
6	1.9000	1.2620	0.7463	-0.0988	0.1159	0.7609 = 0
	0.4207	-0.0945	-0.0118	0.1161	0.0005	-0.4565 = 0
	0.2487	-0.0118	-0.0927	-0.2505	-0.2398	0.2580 = 0
	-0.0165	0.0580	-0.1252	-0.5336	0.0008	0.1950 = 0
	0.0194	0.0003	-0.1198	0.0008	-0.5534	0.0013 = 0
7	$2 \cdot 4004$	1.4671	0.8783	-0.1224	0.1242	0.7596 = 0
	0.4890	0.0577	-0.0144	0.1359	0.0025	-0.4563 = 0
	0.2928	-0.0144	0.0624	-0.2920	-0.2816	0.2566 = 0
	-0.0204	0.0679	-0.1460	-0.4543	0.0004	0.1949 = 0
	0.0207	0.0012	-0.1408	0.0004	-0.4717	0.0016 = 0

Table XIV B. Sets of simultaneous equations in $ip_1^1,\,p_2^0,\,p_2^2,\,ip_3^1,\,ip_3^3$ and H/h for $\beta=8$ to 14

β	ip_1^1	p_2^0	p_2^2	ip_3^1	ip_3^3	$_{\cdot}H/h$
8	2.9070	1.6702	1.0130	-0.1489	0.1280	0.7582 = 0
J	0.5567	0.2103	-0.0172	0.1557	0.0052	-0.4560 = 0
	0.3377	-0.0172	0.2189	-0.3333	-0.3241	0.2552 = 0
	-0.0248	0.0778	-0.1667	-0.3743	-0.0005	0.1948 = 0
	0.0213	0.0026	-0.1620	-0.0005	-0.3871	0.0019 = 0
9	3.4205	1.8709	1.1505	-0.1786	0.1276	0.7567 = 0
	0.6236	0.3634	-0.0204	0.1757	0.0087	-0.4558 = 0
	0.3835	-0.0204	0.3769	-0.3744	-0.3674	0.2538 = 0
	-0.0298	0.0879	-0.1872	-0.2935	-0.0016	0.1946 = 0
	0.0213	0.0043	-0.1837	-0.0016	-0.2987	0.0023 = 0
10	3.9420	2.0686	1.2909	-0.2118	0.1215	0.7551 = 0
10	0.6895	0.5172	-0.0238	0.1959	0.0135	-0.4554 = 0
	0.4303	-0.0238	0.5364	-0.4153	-0.4115	0.2523 = 0
	-0.0353	0.0980	-0.2076	-0.2118	-0.0036	0.1944 = 0
	0.0203	0.0067	-0.2058	-0.0036	-0.2058	0.0028 = 0
11	$4 \cdot 4725$	$2 \cdot 2631$	1.4343	-0.2493	0.1096	0.7537 = 0
	0.7544	0.6717	-0.0277	0.2163	0.0193	-0.4551 = 0
	0.4781	-0.0277	0.6976	-0.4559	-0.4566	0.2506 = 0
	-0.0415	0.1081	-0.2279	-0.1289	-0.0063	0.1941 = 0
	0.0183	0.0096	-0.2283	-0.0063	-0.1073	0.0033 = 0
12	5.0132	2.4538	1.5815	-0.2919	0.0907	0.7520 = 0
	0.8179	0.8271	-0.0320	0.2368	0.0266	-0.4547 = 0
	0.5272	-0.0320	0.8609	-0.4959	-0.5028	0.2487 = 0
	-0.0486	0.1184	-0.2479	-0.0444	-0.0104	0.1938 = 0
	0.0152	0.0133	-0.2514	-0.0104	-0.0015	0.0039 = 0
13	5.5663	2.6402	1.7322	-0.3404	0.0648	0.7506 = 0
2.0	0.8801	0.9835	-0.0370	0.2576	0.0359	-0.4542 = 0
	0.5774	-0.0370	1.0263	-0.5351	-0.5499	0.2467 = 0
	-0.0567	0.1288	-0.2675	0.0420	-0.0164	0.1933 = 0
	0.0108	0.0180	-0.2750	-0.0164	0.1141	0.0047 = 0
7.4	0.1000	0.0000	1.0004	0.0000	0.0004	0.7400
14	6.1330	2.8209	1.8864	-0.3968	$0.0294 \\ 0.0478$	0.7492 = 0 $-0.4538 = 0$
	0.9403	1.1411	-0.0428	0.2784		-0.4538 = 0 0.2445 = 0
	0.6288	-0.0428	1.1943	-0.5731	$-0.5980 \\ -0.0251$	0.2445 = 0 0.1927 = 0
	-0.0661 0.0047	$0.1392 \\ 0.0239$	$-0.2865 \\ -0.2990$	$0.1312 \\ -0.0251$	-0.0251 0.2434	0.1927 = 0 0.0055 = 0
	0.0047	0.029	— U·Z99U	-0.0291	0.7494	0.0099 = 0

341

			24	-14	- 1G	-28	<u>m</u> c	n ∞ 	ှ ထ	9	0,	- - - -) <u> </u>	7.G-	3 2	- 55 55	88	-13	— ,	 	⊣
		its of p_2^2	20	-12		$-\frac{22}{5}$	11	- 19	2 1	- 10			•	- 44 3.5	91-	43.	17	-10		- 	- 1
		Coefficients of p_2^2	16	ი <u>ო</u>	် အ 	-17	G 9	° =	- 14 	- - -			. (- 33 - 14	# x	33	14	∞			
			$\tilde{12}$	96	- - - - -	-12	9 -	 4. ox	o -	က ၊ ၂			,	- 23	9) 	10	9			
D)		(24	-14	5 70	6 -	4 6	- ص –	7					က ေ							
OD .		p_2^0		ļ	ı	1		1							1		1				
ip_r^n (r		ents of	20		- C 4	<u> </u>	40	ا ت						4 -	- 						
()	als)	Coefficients of p_2^0	16	∞	 4 မ	9-	က	 -						ಣ ೯	٦	> -	-				
(r EVER)	of decim		12	9-	n 01	4-	87 (7						01 -	-i o	> -	-				
BLE XV A. EXPANSIONS FOR $p_r^n \ (r \ ext{Even})$ and $ip_r^n \ (r \ ext{Odd})$	(Coefficients to 3 places of decimals)		24	-35	-10 - 10	-24	11	<u>-</u>	>) -				- 53	χοι	ဂ င် ၂	# x	9 -	П	- 1	
NSIONS	ients to	of ip_1^1	20	$-\frac{27}{20}$		-19		၂ က (>) 				-18			- 19 6		0	- - -	
XPA	effici	ients	{	,				'		'				'						'	
A. E.	တ္)	Coefficients of ip_1^1	16	$-\frac{21}{2}$	01 - -	-15	7	- 4						-13	ဂ	 	 - -	_ 	0	_ 1	
E XV			12	-15	 - 4	-11	τ Ο .	က 	60					6 -	40		- IO	က 			
TABL																					
Ι		ų	24											$\overline{91}$		4 -	- 	1			
		ts of H/	20											15		ಈ -	- 	4			
		Coefficients of H/h	16											$\frac{13}{13}$	9	က					
		Ö	? = 12											$\frac{12}{1}$	9 1	က					
			r S	∞	00	1 x	0	0 7 (∞	0 %	ία	010	21	7	<u>ග</u> ,	_ ı	r 0	- ·	_	6	
			u			7			4		, 9		_	1	1		. .	_	ĭ.		П

Table XV b. Expansions for $p_r^n \ (r \ \text{even})$ and $ip_r^n \ (r \ \text{odd})$

(Coefficients to 3 places of decimals)

	24	9	၂	က	15	∞	9	12	5	4	0		0	31	-11	9	17	2-	ī	4-	П	
Coefficients of p_4^2	20	õ	- - - -	2	12		ũ	10	4-	က				24	6-	က	13	9-	4	ا ا		
Coefficie	16	4	-2	67	6	_ 5	4	œ	-3	က				18		4	10	_	က	-2	I	
	12	က	-2	_	7	4	က	ī	-2	બ				12	-5	ಣ	<u>~</u>	_ _	C7	-2		
	24	œ	4-	4	9	- 13	63							-16	က	_ 21	<u>L</u> –	1	<u>-</u>			
nts of p_4^0	20	9	4-	က	က	-2	67							-13	က	- - -	-5	_	-			
Coefficients of $ ho_4^0$	91	ಸರ	-	က	4	-2	67							-10	67	-1	-4	_				
	12	4	-2	67	က		_								63	ī	-3	T				
	24	4 -	_		40	-18	11	42	-19	12	Т	_	0	21	П	_	09	-25	16	41	-14	တ
its of ip_3^3	20	က 				-15								17	6 -	ŭ	47	-20	13	35	-12	∞
Coefficients of ip_3^3	16	2			24	-12	<u>_</u>	25	-13	_				13		4	35	-16	10	24	-10	9
	12	- 1			17	6 –	က်	18	-10	က				6	ا ت	က	25	-12	7	17	2 -	4
	24	18	2-	4	7	4-	ಣ	Π						16	9-	īĊ	16	9-	4	-1	П	0
its of ip_3^1	20	14	9-	4	, TO	ا	က	-1						12	-5	4	13	1	က			
Coefficients of $i p_{\scriptscriptstyle 3}^{\scriptscriptstyle 1}$	16	11	-5	က	4	2	67	7						6	- 4	က	10	4-	က			
	$\beta = 12$	∞	က က 	63	က	-2	63							9	ا ئ	બ	_	-	63			
	r	œ	10	12	œ	10	12	œ	10	12	œ	$\frac{10}{10}$	12	7	o.	11	7	6	Ξ	7	6	Π
	u	0			01			4			9			_			ಣ			Ŋ		

Table XV c. Expansions for p_r^n (r even) and $i\phi_r^n$ (r odd)

			24				01	_ 	0	-52	23	-15	-60	24	-14	က	-	0	-26	14	- 11	-61	35	-24
		Coefficients of ip_5^5	20				<u> </u>	0	0	-41	18	-12	-47	16	-11	67	0	0	-21	Π	ဂ ၂	-47	82	-19
		Coefficie	16							-30	14	6 -	-35	15	6 -	1	0	0	-16	G		-34	55	-15
			12							-25	10	9 –	-25	Π	_ 1				-12	9	 -	-24	16	-11
(24				-25	10	9 –	-14	7	 က	4	က 	_	ಸರ	9	4	22	16	-10	73	11	 ည
$Tr \sim$		Coefficients of ip_5^3	20				-20	∞	- 5	-12	9	4	က	- 2		4	ro	က 	18	13	ж 	56	6	4
- (·	nals)	Coefficie	16	- 1	0	0	-16	9	5	6 -	īĊ	က 	01	- 2		က	4	က 	14	10		42	_	4
i i ン	(Coefficients to 3 places of decimals)		12	- 1	0	0	-12	4	- 4		က	- - 5	_			2	က	- 2	10	7	ا ت	30	JO	က
Lore	o 3 place		24	-16	4	က 	- 1	0	- 1	က	- 1					26	9	ا 5	53	7	က 	က 	67	1
	ficients to	nts of ip_5^1	20	-13	က		- -	0	-	67	- 1					50	4	- 4	41	ō	က ၂	- 2	П	
	(Coefl	Coefficients of ip_5^1	16	-10	က	- 2	- 1	_	- 1	01	- і					15	က	က ၂	31	4	- 2	- -	T	
4 4		:	12	∞	2	-	-	0	0	_						11	63	- 2	22	က	-			
			24	- 2	1	0	19	6 -	7	46	-25	15	32	-12	œ	9 -	87	0	74	-29	17	83	-29	18
		Coefficients of p_4^4	20	- 1	0	0	15		īĊ	36	-18	12		-10		4		0	28	-23	14	64	-23	14
		Coefficie	16	-	0	0	11	9 -	4	27	-14	6	18	%	ro	- 2	, —	0	43	-18	10	47	-18	11
			$\beta = 12$				œ	- 4	က	19	-10	9	13	9 –	4	-	0	0	30	-13	_	33	-13	œ
			r	œ	10	12	∞	10	12	œ	10	$\frac{1}{12}$	o	10	12	7	0	11	7	6	11	7	6	11
			u	0			23			4			9			_			က			20		

TABLE XV D. Expansions for ρ_{μ}^{n} (r coefficients of ρ_{μ}^{n}																									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				24				0 1	0	0	-25	13	-10	-26	15	-10	- 1	0	0	5	0	- 1	-106	37	-21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			nts of p_6^6	20				_	0	0	-19	10	∞ 	-20	12	ж 				ಣ	0	0	-81	29	-17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Joefficie	16					0	0	-14	œ	9 –	-15	6	9 –				_	0	0	09-	22	-13
			J	12							0	9	4	-10	9	4							-42	15	6 –
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	EVEN) AND ip_r^n $(r \text{ ODD})$		nts of p_6^4	24				က 	9	4 -	11	14	6 -	09	10	ا ق	-		0	-61	17	-10	-14	10	L –
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				20					70		6	11	%	47	œ	- 4				-47	14	∞ 		6	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		als)	loefficie	16				- 2	4	က 	_	∞	9 -	36	9	က ၂				-35	Π	9 -		7	- 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		f decim	0	12					ಣ	2		9	- 4	25	4	21	-	0	0	-25	∞	- 4	9 -	9	က
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	p_r^n (1	ces o								,						,	•			•		•	,		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	NSIONS FOR	o 3 pla	nts of p_6^2	24	20	ΣŌ	2	37	œ	1	42	9	د ا	-	Π	0	-44	6	- 4	16	3	- 2	_	-	Т
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		icients t		20	16	4	- 2	59	7	- 4	34	70	-	0	-	0	-33	œ	- 4	11	87	- 2	0	-	_
Coefficients of ρ_0^0 $r \beta = 12 16 20 24 12$ $8 20 28 37 47 9$ $10 2 3 4 6 2$ $12 -2 -2 -3 -3 -1$ $12 -1 -2 -3 -3 -1$ $10 2 3 4 16$ $10 2 3 4 5$ $10 2 3 4 16$ $10 1 -1 -2 -2 -2$ $10 1 -1 -1 -2$ $10 1 1 2 -2$ $10 1 1 1 2 -2$ $11 1 1 1 2 -2$ $11 1 1 1 2 -2$ $11 1 1 1 1 5$ $11 1 1 1 1 1$ $11 1 1 1 1$ $11 1 1 1 1$ $11 1 1 1 1$ $11 1 1 1 1$ $11 1 1 1 1$ $11 1 1 1$ $11 1 1 1$		(Coeff	oefficie	16	13	က	2	55	9	ا ئ	56	4					-24	9	ا ئ	œ	-	7	0		-
Coefficients of ρ_0^3 $r \beta = 12 16 20 24$ $8 20 28 37 47$ $10 2 3 4 6$ $12 -2 -2 -3 -3$ $18 25 33 41$ $10 2 3 4 5$ $10 2 3 4 5$ $10 2 -2 -3 -3$ $10 2 2 -3 -3$ $10 2 -1 -2 -2$ $10 1 -1 -1 -1$ $11 1 1 2 2$ $11 1 1 1 1$ $11 1 1 1 1$ $11 1 1 1$ $11 1 1 1$ $11 1 1 1$ $11 1 1 1$ $11 1 1 1$			O	12	6	01	_	91	4	2	19	က	-					4	81	5	_		0	_	
Coefficients of p_0^0 $r \beta = 12 16 20 24$ $8 20 28 37 47$ $10 2 3 4 6$ $12 -2 -2 -3 -3$ $18 25 33 41$ $10 2 3 4 5$ $10 2 3 4 5$ $10 2 2 -2 -2$ $10 1 -1 -1 -2$ $10 1 1 1 1$ $11 1 1 2 2$ $11 1 1 1 1$ $11 1 1 1$ $11 1 1 1$ $11 1 1 1$ $11 1 1$ $11 1 1$ $11 1 1$ $11 1 1$ $11 1 1$ $11 1$	闰						1			i			ı				ļ		1			1		ı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$T_{ m A}$			24	47	9	೯	41	70	-2	-2						44	9-	01	-	Η				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			its of p_6^0	20	37	4	-3	33	4	-2	-1						33	10	87	_	_	بـــ			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			oefficier														24	4	press)		7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ŭ																						
				β											_										
				r	8 (10	12		10	12		10	12		10	12	1	6	II		6			o o	П

Table XVI a. Sets of simultaneous equations in $ip_1^1, p_2^0, p_2^2, ..., p_6^6$ and H/h

(Coefficients to 4 places of decimals)

		1	11	Ji	72	1	IN	(J	iŁ	A	N	•	RC	Jι	יונ	NL	Ŀ.	D.	В	Y	1\	/1.1	١K	Ш	ונ	Α.	IN:	5				
	H/h	1527 = 0	1524 = 0	1521 = 0	1517 = 0	-2744 = 0	-2743 = 0	-2742 = 0	-2741 = 0	1565 = 0	1557 = 0	1548 = 0	1538 = 0	2350 = 0	2353 = 0	2355 = 0	2358 = 0	0 = 6	13 = 0	16 = 0	20 = 0	-5 = 0	0 = 7 - 7	0 = 6 -	-11 = 0	10 = 0	14 = 0	19 = 0	25 = 0	-1 = 0	$-\bar{2}=0$	-3 = 0	-5 = 0
	p_6^6	<u> </u>	-1		-5	0	0	-1	-2	6	16	56	37	_	_	က	.c	-28	-71	-136	-228	0	0	0	0	1	_ 7	-10	-12	1240	1585	1886	2131
	p_6^4	40	61	06	127	∞ 	-11	-14	-17	777	1058	1354	1664	98	108	127	140	-1639	-2215	-2809	-3425	0	-	5	10	1259	1671	2079	2481	-1009	-1374	-1758	-2165
	p_6^2	948	1260	1569	1875	361	478	592	702	1005	1340	1674	2007	-264	-352	-440	-528	-1514	-2005	-2486	-2957	1214	1624	2036	2453	710	947	1183	1419	-511	-663	-804	-928
	p_6^0	1315	1734	2140	2530	486	643	797	949	512	099	793	806	- 758	-1001	-1237	-1466	1	9	58	59	1183	1577	1971	2365	438	595	761	934	16	24	36	48
	$ip_{\tilde{5}}^{5}$	∞	16	25	37	<u> </u>	-2	<u>၂</u>	-4	-2	17	47	90	-10	-16	-23	-30	1105	1424	1713	1966	2	4	<u> </u>	11	92 –	-108	-146	-187	-2599	-3551	-4560	-5634
`	ip_5^3	675	906	1139	1375	-144	-190	-235	-279	1611	2157	2706	3259	1037	1381	1725	2068	-861	-1150	-1442	-1730	70	91	112	131	7	67	9 -	-19	-2385	-3166	-3935	-4690
	ip_5^1	537	714	890	1064	-288	-381	-473	-561	1536	2034	2523	2998	319	428	538	649	-460	009 -	-729	-846	1000	1328	1654	1976	-1157	-1538	-1915	-2287	-31	-26	-11	16
-	p_4^4	14	4	-15	-45	-12	-17	-25	-27	904	1166	1402	1612	78	112	152	196	2738	3726	4762	5852	21	_	٦	15	178	253	337	431	-10184	-6805	-3353	180
	p_4^2	-1520	-2040	-2569	-3106	1012	1348	1683	2017	-621	-853	-1102	-1367	-235	-307	-373	-435	2751	3691	4644	2611	-1673	-2232	-2792	-3354	-10628	-7491	-4347	-1195	178	253	337	431
	p_4^0	-2166	-2890	-3615	-4340	710	944	1178	1409	-398	-526	-652	-774	1778	2371	2963	3555	1111	146	180	212	-10439	-7249	-4058	-865	-1673	-2232	-2792	-3354	23		-	-5
	ip_3^3	909	987	954	1107	- 83	-112	-143	-175	-2873	-3881	-4918	-2980	73	108	151	201	-1796	1676	5190	8753	111	146	180	212	2751	3691	4644	5611	2738	3726	4762	5852
	ip_3^1	-302	-414	-535	-664	1371	1824	2277	2728	-3044	-4075	-5117	-6169	-937	2758	6455	10158	73	108	151	201	1778	2371	2963	3555	-235	-307	-373	-435	78	112	152	196
	p_2^2	2904	3901	4914	5947	-106	-138	-170	-200	4778	8422	12101	15823	-3044	-4075	-5117	-6169	-2873	-3881	-4918	-2980	-398	-526	-652	-774	-621	-853	-1102	-1367	904	1166	1402	1612
	p_2^0	5142	0803	8586	10315	4814	8421	12030	15641	-106	-138	-170	-200	1371	1824	2277	2728	- 83	-112	-143	-175	710	944	1178	1409	1012	1348	1683	2017	-12	-17	$-\frac{22}{2}$	-27
	ip_1^1	9364	13177	000LT	20850	5142	6863	8586	10315	2904	3901	4914	5947	-302	-414	-535	-664	909	286	954	1107	-2166	-2890	-3615	-4340	-1520	-2040	-2569	-3106	14	4	- 15	-45
	θ	27	01	25	74	$1\overline{2}$	16	20	24	12	91	2 2 3	5 4	12	16	20	24	12	16	20	24	12	16	20	24	12	16	$\frac{50}{20}$	24	12	$\frac{16}{16}$	2 2 2 3	74

Table XVI b. Sets of simultaneous equations in $ip_1^1, p_2^0, p_2^2, ..., p_6^6$ and H/h

A. T. DOODSON

									A		ľ.	1)(O	D	S	10	N											
	H/h	-914 = 0	-912 = 0	-910 = 0	-808 = 0	-1 = 0	-1 = 0	-2 = 0	-2 = 0	0 = 0	1 = 0	2 = 0	3 = 0	10 = 0	15 = 0	21 = 0	28 = 0	-111 = 0	-16 = 0	-22 = 0	-29 = 0	-1 = 0	- 1 = 0	0 = 0	1 = 0	0 = 0	0 = 0	0 = 0	0 = 0
	p_6^6	7	-1	П	9	6	- 13	-54	-117	2450	3334	4263	5247	0	—	- -	4	-10	-18	-32	-48	275	373	475	580	-31195	-27517	-23787	-19994
	p_6^4	-31	_ 53	- 84	-127	189	248	306	359	2184	2917	3652	4385	55	9	7	œ	608 -	-1077	-1346	-1618	-33049	-30013	-26945	-23844	275	373	475	280
	p_6^2	-357	-479	009 –	-725	1209	1606	1999	2388	19	13	- 	-27	-1876	-2493	-3106	-3714	-32736	-29613	-26468	-23300	608 -	-1077	-1346	-1618	-10	-18	-32	-48
	p_6^0	1104	1472	1842	2219	84	106	125	141	-1	-1	Т	4	-32644	-29494	-26319	-23121	-1876	-2493	-3106	-3714	5	9	7	∞	0	_		4
	ip_5^{δ}	-11	-20	-33	-20	208	270	324	367	-20517	-17268	-13958	-10575	-	Π	_	4	19	13	- 1	-27	2184	2917	3652	4385	2450	3334	4263	5247
cimals)	ip_5^3	-968	-1284	-1595	-1901	-20841	-17750	-14634	-11489	208	270	324	367	84	106	125	141	1209	1606	1999	2388	189	248	306	359	6	-13	- 54	-117
aces of de	ip_5^1	-19214	-15601	-11976	- 8336	896 –	-1284	-1595	-1901	-11	-20	-33	-50	1104	1472	1842	2219	-357	-479	-600	-725	-31	- 53	- 84	-127	7	-	_	9
(Coefficients to 4 places of decimals	p_4^4	-31	-26	- - -	16	-2385	-3166	-3935	-4690	-2599	-3551	-4560	-5634	16	24	36	48	-511	-663	-804	-928	-1009	-1374	-1758	-2165	1240	1585	1886	2131
Coefficier	p_4^2	-1157	-1538	-1915	-2287	7	5	9 -	-19	- 76	-108	-146	-187	438	595	761	934	710	947	1183	1419	1259	1671	2079	2481	ا ت	7	-10	-12
<u> </u>	p_4^0	1000	1328	1654	1976	70	91	112	131	23	4	7	11	1183	1577	1971	2365	1214	1624	2036	2453	0	ī	ī	10	0	0	0	0
	ip_3^3	-460	-600	-729	-846	- 861	-1150	-1442	-1730	1105	1424	1713	1966	-5	9	28	59	-1514	-2005	-2486	-2957	-1639	-2215	-2809	-3425	- 28	- 711	-136	-228
	ip_3^1	319	428	538	640	1037	1381	1725	2068	-10	-16	-23	-30	- 758	-1001	-1237	-1466	-264	-352	-440	-528	98	108	127	140	0	 1	က	rO
	p_2^2	1536	2034	2523	2998	1611	2157	2706	3259	-2	17	47	06	512	099	793	806	1005	1340	1674	2007	777	1058	1354	1664	6	91	$\overline{56}$	37
	p_2^0	-288	-381	-473	-561	-144	-190	-235	-279	-	-2	-3	-4	486	643	797	949	361	478	592	702	%	-11	-14	-17	0	0	T	-2
	ip_1^1	537	714	890	1064	675	906	1139	1375	œ	16	25	37	1315	1734	2140	2530	948	1260	1569	1875	40	61	06	127	-1	1	-2	_ 5
		^3	•	_		•	••		ىب.	•	•	_	·	0.7	•		<u>ن</u> ــ	•	•	_	u.	•	••		u.u.	•	•	_	ىب

 $\begin{array}{c} \varphi \\ 2012 \\ 2004 \\ 2012$

Table XVII. Values of p_r^n (r even) and ip_r^n (r odd) resulting from the SOLUTION OF THE EQUATIONS IN TABLE XIV

TIDES IN OCEANS BOUNDED BY MERIDIANS

				(Coeffi	cients of H/h)			
n	r	$\beta = 1$	2	3	4	5	6	7
1	1	1.3628	-8.945	-0.5244	-0.0601	0.1350	0.870	0.7440
2	0	-0.4205	-2.453	-1.0189	-1.1749	-1.7469	4.630	-0.7359
	2	0.3643	-0.663	0.3306	0.6148	1.4739	-10.985	-1.6306
3	1	0.1960	0.254	0.1936	0.1435	-0.0738	3.423	0.8100
	3	-0.0009	-0.053	-0.0308	-0.0672	-0.2252	$2 \cdot 418$	0.5215
		$\beta = 8$	9	10	11	12	13	14
1	1	1.2914	4.367	-2.722	-0.6914	0.453	-3.234	-1.1473
2	0	-1.8628	-6.585	4.032	0.9596	-0.713	4.251	1.2250
	2	-1.3669	-3.139	1.704	0.5017	-0.108	2.544	1.5586
3	1	0.6558	0.238	1.597	1.7035	3.082	-3.773	0.4087
	3	0.6345	$2 \cdot 154$	-1.857	-1.1677	-2.210	5.187	1.8360

Table XVIII. Values of $p_r^n\ (r\ { m even})$ and $ip_r^n\ (r\ { m odd})$ resulting from the SOLUTION OF THE EQUATIONS IN TABLE XVI AND EQUATIONS INTERPOLATED FROM THEM

(Coefficients of H/h)

n	r	eta=15	16	17	18	19	20
1	1	-0.954	-0.134	-0.3334	-0.3162	-0.2909	-0.2762
2	0	0.345	1.752	0.8768	0.6551	0.5215	0.4079
	2	2.994	-4.010	-0.9465	-0.4536	-0.2254	-0.0231
3	1	3.122	-6.055	-1.7456	-0.9765	-0.5980	-0.2757
	3	2.709	-3.197	-0.7211	-0.3524	-0.1982	-0.0729
4	0	0.905	-1.633	-0.5235	-0.3810	-0.3793	-0.5055
	2	0.762	0.104	0.3513	0.4208	0.5235	0.7655
	4	1.815	-2.659	-0.7632	-0.5102	-0.4704	-0.5896
5	1	0.227	-0.802	-0.3485	-0.2906	-0.2916	-0.3459
	3	0.029	-0.237	-0.0742	-0.0214	0.0353	0.1457
	5	-0.141	0.298	0.1168	0.1045	0.1280	0.2118
6	0	-0.003	0.010	-0.0036	-0.0112	-0.0210	-0.0409
	2	-0.078	0.093	0.0267	0.0202	0.0222	0.0321
	4	-0.124	0.223	0.0844	0.0736	0.0862	0.1310
	6	0.075	-0.108	-0.0293	-0.0171	-0.0118	-0.0065

348

	10	0.9286	0.0942	-0.0025	0.0012	-0.0004	1 G	7666.0	0.0067	0.0125	-0.0027	0.0012	$9000 \cdot 0 -$	-0.0489	0.0133	-0.0038	0.0016	-0.0008	-0.0012	$0.000 \cdot 0$	$\begin{array}{c} 0.0001 \\ 0.0001 \end{array}$	- 0.000T	-1.5360	0.3678	0.0044	-0.0005	0.000	-0.0001	-0.4277	0.0238	-0.0047	0.0019	6000.0-	$\frac{2900.0}{0}$	-0.0030	9000.0 -	
	6	-1.5169	-0.0891	-0.0001	-0.0000	0.0001	2000	$\frac{2220\cdot 1}{2}$	-0.0455	-0.0153	0.0036	-0.0017	$6000 \cdot 0$	0.0358	-0.0156	0.0042	-0.0018	0.0010	0.000	-0.0001	0.0000	T000-0	2.4647	0.0548	-0.0151	0.0047	-0.0018	6000-0	0.4961	- 0.0158 - 0.0058	9900.0	9700-0	0.0013	0.0082	0:0031	9000.0	
	œ	-0.4291	-0.0147	-0.0000	0.0002	-0.0001	4 6 6	-0.4452	-0.0106	-0.0049	0.0013	9000.0 -	0.0003	0.0054	-0.0045	0.0013	-0.0005	0.0003	0.0001				0.7286	0.1511	-0.0101	0.0029	-0.00II	c000-0	0.1461	-0.0040	0.0025	0100-0	e000-0	0.0024	7000.0	0.0001	
,	7	-0.1695	8000.0 -	-0.0012	0.0003	-0.0002	10000	-0.5311	0.0028	-0.0043	0.0014	$9000 \cdot 0 -$	0.0003	0.0005	-0.0037	0.0011	-0.0005	0.0003					0.4198	0.1866	-0.0124	0.0035	-0.0013	9000-0	0.1201	-0.0054	0.0027	-0.0011	c000-0	0.0019	0.0004	0.0001	
H/h	9	1.0664	0.0441	-0.0054	0.0019	-0.0008	00000	-3.5782	0.0888	-0.0203	0.0071	-0.0031	0.0016	-0.0162	-0.0181	0.0057	-0.0024	0.0013	-0.0002	-0.0003			0.4906	0.7885	-0.0583	0.0158	-0.0059	0.0058	0.5569	-0.0451	0.0156	-0.0061	0.0029	0.0083	0.0014	-0.000 <i>t</i> 0.0004	
(Coefficients of H/h)	70	-0.4024	$6900 \cdot 0 -$	0.0001	-0.0001			0.4801	-0.0154	0.0016	$9000 \cdot 0 -$	0.0003	-0.0001	0.0032	0.0018	9000.0 -	0.0003	-0.0001					0.0762	-0.0170	0.0018	-0.0005	0.0002	-0.0001	-0.0519	0.0064	-0.0017	9000.0	-0.0003	-0.0007	-0.0001	0.0001	
Ď)	4	-0.2706	-0.0017	-0.0003	0.0001		6	0.2003	-0.0057	0.0002	-0.0001			0.0014	9000.0	-0.0002	0.0001						-0.0339	0.0331	-0.0026	$9000 \cdot 0$	-0.0003	0.0001	-0.0155	0.0024	-0.0005	$\begin{array}{c} 0.0002 \\ 0.0002 \end{array}$	-0.0001	-0.0002			
	က	-0.2347	0.0010	-0.0007	0.0002	-0.0001	1	0.1077	-0.0014	-0.0004	0.0001	-0.0001		9000.0	0.0002	-0.0001							-0.2959	0.0446	-0.0041	0.0010	-0.0004	0.0002	-0.0071	8000.0	-0.0001			-0.0001			
İ	બ	-0.5649	0.0206	-0.0049	0.0016	-0.0007	0.000	-0.2160	0.0174	-0.0050	0.0017	-0.0007	0.0004	-0.0015	-0.0002	0.000	1						-5.0467	0.0585	-0.0091	0.0024	-0.0010	0.0005	-0.0121	-0.0053	0.0014	-0.0006	0.0003				
	$\beta = 1$	6960-0-	-0.0017	0.0003	-0.0001			0.1187	-0.0021	0.004	-0.0001			0.0003	0.000								0.7689	0.0451	-0.0040	$6000 \cdot 0$	-0.0004	0.0002	-0.0002	0.0007	-0.0002	0.0001					
		, c	ı 4	9	×	10	77	63	4	9	· ∞	10	$\overline{12}$	4	9	oo	<u>_</u>	27	9	× 00	10	12	Н	က	10	7	6	11	က	70	_	6	11	лO	<u>~</u>	ი 11	
	n							01						4	ł				હ										ಣ					ಸರ			

349

Table XIX B. Values of $p_r^n \pi_r^n$ (r even) and $i p_r^n \pi_r^n$ (r odd)

 $\begin{array}{c} -0.0635 \\ -0.0504 \\ 0.0038 \\ -0.0013 \\ 0.0006 \end{array}$ 0.0002 - 0.0001 $\begin{array}{c} 0.0161 \\ 0.0161 \\ -0.0023 \\ 0.0011 \\ -0.0006 \end{array}$ -0.0017 0.00080.0940 - 0.06380.0003 $\begin{array}{c} -0.0075 \\ 0.1366 \\ 0.0040 \\ -0.0005 \end{array}$ 8000.0-0.0020 -0.0010-0.00040.0012-0.01680.02120.0309-0.1052-0.1558-0.00479000-0--0.00360.0001-0.000 $\begin{array}{c} -0.1641 \\ -0.1377 \\ -0.0425 \\ 0.0033 \\ -0.0012 \\ 0.0005 \end{array}$ $\begin{array}{c} 0.1201 \\ -0.0478 \\ -0.0018 \\ 0.0001 \end{array}$ $\begin{array}{c} 0.0027 \\ -0.0005 \\ 0.0002 \\ -0.0001 \end{array}$ $\begin{array}{c} -0.0839 \\ 0.0106 \\ -0.0016 \\ 0.0008 \\ -0.0004 \end{array}$ $\begin{array}{c} -0.0015 \\ -0.0012 \\ 0.0006 \\ -0.0003 \end{array}$ 0.0734 0.0934 $\begin{array}{c} -0.0457 \\ 0.0051 \\ 0.00037 \\ 0.0008 \\ 0.0004 \end{array}$ $\begin{array}{c} 0.0186 \\ -0.0041 \\ 0.0014 \\ -0.0007 \end{array}$ $\begin{array}{c} 0.1509 \\ -0.0481 \\ -0.0010 \\ -0.0001 \end{array}$ $\begin{array}{c} -0.0910 \\ 0.0091 \\ -0.0017 \\ 0.0008 \\ -0.0004 \end{array}$ $\begin{array}{c} -0.0012 \\ 0.0005 \\ -0.0003 \end{array}$ $\begin{array}{c} -0.1784 \\ -0.2249 \\ -0.0423 \\ 0.0033 \\ -0.0012 \\ 0.0005 \end{array}$ $\begin{array}{c} -0.1478 \\ 0.0751 \\ 0.0025 \\ -0.0007 \\ 0.0003 \\ -0.0002 \end{array}$ $\begin{array}{c} -0.0812 \\ -0.0031 \\ -0.0040 \\ 0.0008 \\ -0.0004 \end{array}$ $\begin{array}{c} 0.0152 \\ -0.0046 \\ 0.0014 \\ -0.0007 \end{array}$ -0.0021 $\begin{array}{c} -0.4021 \\ -0.0508 \\ 0.0036 \\ -0.0013 \\ 0.0005 \end{array}$ $\begin{array}{c} -0.1661 \\ -0.0108 \\ -0.0057 \\ 0.0013 \\ -0.0007 \end{array}$ $\begin{array}{c} 0.2020 \\ -0.0660 \\ -0.0003 \\ -0.0004 \\ 0.0002 \end{array}$ $\begin{array}{c} -0.3083 \\ 0.0627 \\ 0.0033 \\ -0.0016 \\ 0.0006 \\ -0.0003 \end{array}$ $\begin{array}{c} 0.0104 \\ -0.0026 \\ 0.0011 \\ -0.0006 \end{array}$ -0.0036 $\begin{array}{c} -0.0016 \\ 0.0007 \\ -0.0003 \end{array}$ $\begin{array}{c} 0.0170 \\ -0.0068 \\ 0.0020 \\ -0.0010 \end{array}$ -0.1362-0.0001-0.188 $\begin{array}{c} -1.3062 \\ 0.0186 \\ 0.0115 \\ -0.0070 \\ 0.0029 \\ -0.0023 \end{array}$ $\begin{array}{c} -0.4744 \\ 0.0275 \\ -0.0099 \\ 0.0042 \\ -0.0023 \end{array}$ $\begin{array}{c} 0.4035 \\ -0.2060 \\ 0.0009 \\ -0.0021 \\ 0.0008 \\ -0.0004 \end{array}$ $\begin{array}{c} -0.0049 \\ 0.0020 \\ -0.0011 \end{array}$ $\begin{array}{c} -0.0756 \\ -1.3946 \\ -0.1168 \\ 0.0064 \\ -0.0024 \\ 0.0007 \end{array}$ $\begin{array}{c} -0.7364 \\ -0.0345 \\ -0.0193 \\ 0.0053 \\ -0.0028 \end{array}$ $\begin{array}{c} 0.0434 \\ -0.0226 \\ 0.0067 \\ -0.0034 \end{array}$ -0.0133(Coefficients of H/h) $\begin{array}{c} 0.3238 \\ -0.0153 \\ 0.0076 \\ -0.0032 \\ 0.0017 \end{array}$ $\begin{array}{c} 0.0092 \\ 0.0029 \\ 0.0012 \\ 0.0006 \end{array}$ $\begin{array}{c} 0.0003 \\ 0.0014 \\ 0.0005 \end{array}$ $\begin{array}{c} 0.9753 \\ 0.1359 \\ 0.0006 \\ 0.00061 \\ 0.0025 \\ 0.0013 \end{array}$ $\begin{array}{c} 0.5383 \\ 0.7190 \\ 0.00331 \\ 0.0002 \\ 0.0003 \\ 0.0003 \end{array}$ $\begin{array}{c} 0.6239 \\ 0.0042 \\ 0.0132 \\ 0.0043 \\ 0.0023 \end{array}$ $\begin{array}{c} 0.0206 \\ 0.0145 \\ 0.0046 \\ 0.0023 \end{array}$ 0.0003 $\begin{array}{c} 0.0048 \\ 0.0012 \\ 0.0005 \\ 0.0003 \end{array}$ $\begin{array}{c} 0.1750 \\ 0.0080 \\ 0.0047 \\ 0.0020 \\ 0.0010 \end{array}$ $\begin{array}{c} 0.2822 \\ 0.0354 \\ 0.0011 \\ 0.0004 \\ 0.0002 \end{array}$ $0.1521 \\ 0.0075$ $\begin{array}{c} 0.0039 \\ 0.0016 \\ 0.0009 \end{array}$ $\begin{array}{c} 0.6473 \\ 0.0941 \\ 0.0063 \\ 0.0021 \\ 0.0008 \\ 0.0003 \end{array}$ $\begin{array}{c} 0.4229 \\ 0.0173 \\ 0.0071 \\ 0.0027 \end{array}$ 0.0014 $\begin{array}{c} 0.0064 \\ 0.0071 \\ 0.0025 \\ 0.0011 \end{array}$ 0.0001 0.5077 0.0285 0.0083 $\begin{array}{c} -0.0010 \\ 0.0004 \\ -0.0002 \end{array}$ $\begin{array}{c} 0.8288 \\ 0.4638 \\ -0.0250 \\ 0.0106 \\ -0.0043 \\ 0.0022 \end{array}$ $\begin{array}{c} 0.3843 \\ -0.0244 \\ 0.0132 \\ -0.0055 \\ 0.0030 \end{array}$ $\begin{array}{c} 0.0104 \\ 0.0022 \\ -0.0010 \\ 0.0006 \end{array}$ $\begin{array}{c} -1.8246 \\ -0.8690 \\ -0.0512 \\ 0.0058 \\ -0.0020 \\ 0.0009 \end{array}$ $\begin{array}{c} 1.1946 \\ -0.0952 \\ 0.0176 \\ -0.0073 \end{array}$ 0.0038 $\begin{array}{c} 0.0035 \\ 0.0153 \\ 0.0060 \\ 0.0029 \end{array}$ $\begin{array}{c} -0.0352 \\ -0.1526 \\ 0.0125 \\ -0.0039 \\ 0.0016 \\ -0.0008 \end{array}$ $\begin{array}{c} -0.1219 \\ 0.0126 \\ -0.0054 \\ 0.0023 \\ -0.0012 \end{array}$ $\begin{array}{c} -0.0032 \\ -0.0005 \\ 0.0003 \\ -0.0002 \end{array}$ $\begin{array}{c} 0.2554 \\ 0.7099 \\ 0.0185 \\ -0.0007 \\ 0.0002 \\ -0.0001 \end{array}$ $\begin{array}{c} -0.5091 \\ 0.0488 \\ -0.0064 \\ 0.0028 \end{array}$ $0.0654 \\ -0.0051$ $\begin{array}{c} 0.0013 \\ -0.0005 \\ 0.0002 \end{array}$ -0.0014-0.0030 -0.0051 $0.0021 \\ 0.0011$ $\begin{array}{c} 0.0545 \\ -0.0026 \\ 0.0010 \\ -0.0004 \\ 0.0002 \end{array}$ $\begin{array}{c} 0.1634 \\ -0.0370 \\ 0.0074 \\ -0.0017 \\ 0.0007 \\ -0.0004 \end{array}$ $\begin{array}{c} -0.0455 \\ 0.0078 \\ -0.0026 \\ 0.0011 \\ -0.0006 \end{array}$ $\begin{array}{c} -0.3901 \\ 0.3924 \\ 0.0045 \\ 0.0003 \\ -0.0001 \\ 0.0001 \end{array}$ $\begin{array}{c} -0.2690 \\ 0.0226 \\ -0.0030 \\ 0.0012 \\ -0.0006 \end{array}$ $\begin{array}{c} -0.0022 \\ 0.0009 \\ -0.0005 \end{array}$ $\begin{array}{c} -0.0011 \\ -0.0001 \\ 0.0001 \\ -0.0001 \end{array}$ = 11 -0.0032

350

		10	0.0318	-0.0362	0.0062	-0.0024	0.0010	0.0757	-0.0217	0.0097	-0.0055	0.0026		-0.0002	0.1045	0.2144	-0.0186	0.0117	-0.0000	0.0036	0.0930	-0.0145	$0600 \cdot 0$	-0.0047	0.0029	-0.0077	0.0049	0.0018
		6	-0.1927	-0.0084	0.0032	-0.0022	0.0017	-0.0914	0.0231	-0.0110	0.0063	-0.0031	0.0001	0.0002	-0.2121	-0.3575	0.0432	-0.0228	0.0118	-0.0071	-0.1557	0.0197	-0.0129	$6900 \cdot 0$	-0.0043	0.0047	-0.0047	-0.0020
(N2		œ	-0.0802	-0.0185	0.0052	-0.0026	0.0016	-0.0273	8900.0	-0.0034	0.0020	-0.0000	0.0001		-0.0575	-0.1105	0.0167	-0.0081	0.0042	-0.0025	-0.0634	0.0101	-0.0056	0.0030	-0.0018	0.0003	-0.0011	-0.0005
Values of $p_{-r}^n \pi_r^n \ (r \ ext{odd})$ and $i p_{-r}^n \pi_r^n \ (r \ ext{even})$		7	-0.0545	-0.0242	0.0073	-0.0036	0.0022	-0.0223	0.0061	-0.0031	0.0018	-0.0007	0.0001		0.0024	-0.0647	0.0127	-0.0059	0.0031	-0.0019	-0.0738	0.0150	-0.0070	0.0037	-0.0023	-0.0007	-0.0007	-0.0004
ODD) AND $\dot{\psi}$	(y/H)	9	-0.0332	-0.1152	0.0381	-0.0185	0.0111	-0.1019	0.0333	-0.0166	8600.0	-0.0028	0.0005	-0.0001	0.5482	-0.0025	0.0231	-0.0110	0.0062	-0.0039	-0.5025	0.1159	-0.0487	0.0253	-0.0152	-0.0076	-0.0022	0.0016
F $p_{-r}^n \pi_r^n (r)$	(Coefficients of H/\hbar)	õ	-0.0315	0.0044	-0.0019	$6000 \cdot 0$	$9000 \cdot 0 -$	0.0095	-0.0038	0.0018	-0.0011	0.0002	-0.0001		-0.1422	-0.0501	0.0056	-0.0023	0.0011	$9000 \cdot 0 -$	9690.0	-0.0165	0.0065	-0.0033	0.0020	0.0012	0.0001	0.0001
	Ď)	4	-0.0182	-0.0046	0.0014	-0.0007	0.0004	0.0030	-0.0013	9000-0	-0.0004	0.0001			-0.0878	-0.0404	0.0063	-0.0026	0.0013	-0.0007	0.0301	8900.0 -	0.0026	-0.0013	0.0007	0.0005		
TABLE XX A		က	0.0071	-0.0102	0.0035	-0.0017	0.0010	0.0016	$9000 \cdot 0 -$	0.0003	-0.0002				-0.0703	-0.0373	8900.0	-0.0028	0.0014	-0.0008	0.0165	-0.0032	0.0011	-0.0005	0.0003	0.0002		
T		63	0.4360	-0.0834	0.0307	-0.0146	0.0083	0.0032	0.0005	-0.0005	0.0003				-0.0891	-0.0926	0.0224	-0.0095	0.0050	-0.0029	-0.0423	0.0140	-0.0065	0.0035	-0.0022	-0.0005	0.0001	
		eta=1	-0.0866	0.0059	-0.0022	0.0011	9000.0 -	0.0003	-0.0004	0.0002	-0.0001				-0.0465	-0.0163	0.0025	$6000 \cdot 0 -$	0.0005	-0.0003	0.0213	-0.0048	0.0019	-0.0010	9000-0	0.0001		
		r	က	īĊ	_	6	11	50	_	o ;	I	7	ර	Π	63	4	9	∞	0 <u>1</u>	12	4	9	∞ ;	0[12	9	∞ <u>c</u>	12
		u	01					4				9									က					ĭĊ		

	06	ì	0.0138	0.0119	0.0033	9000.0 -	0.0003	8900.0	-0.0063	0.0033	-0.0020	-0.0061	0.0026	-0.0016	0.0059	0.0014	-0.0059	0.0011	9000.0 -	0.0003	0.0411	0.0120	-0.0003	-0.0001	0.0003	-0.0182	0.0082	-0.0037)
	61	9	0.0201	0.0225	0.0010	0.0003	-0.0002	0.0119	-0.0036	0.0024	-0.0015	-0.0034	0.0018	-0.0011	0.0302	0.0082	-0.0056	0.0014	-0.0007	0.0004	0.0196	0.0094	9000.0 -	0.0002		-0.0151	0.0061	-0.0028	•
(z	<u>«</u>)	0.0285	0.0359	-0.0014	0.0015	$8000 \cdot 0 -$	0.0188	-0.0032	0.0026	-0.0016	-0.0025	0.0017	-0.0010	0.0568	0.0118	-0.0070	0.0020	-0.0010	$9000 \cdot 0$	0.0062	0.0082	-0.0008	0.0002		-0.0170	0.0061	-0.0029) + >> >>
VALUES OF $p_{-r}^n \pi_r^n$ $(r \ ext{ODD})$ and $ip_{-r}^n \pi_r^n$ $(r \ ext{EVEN})$	17	•	0.0419	0.0652	-0.0063	0.0040	-0.0022	0.0354	-0.0050	0.0041	-0.0025	-0.0024	0.0022	-0.0013	0.1099	0.0124	-0.0113	0.0032	-0.0017	0.0010	-0.0126	0.0075	0.0007		0.0002	-0.0263	9800.0	-0.0042	1
d and d	91	2	0.0841	0.2396	-0.0356	0.0194	-0.0110	0.1452	-0.0231	0.0165	-0.0100	-0.0050	0.0065	-0.0040	0.4104	-0.0137	-0.0378	0.0091	-0.0051	0.0031	-0.1110	0.0028	0.0013	-0.0021	0.0021	-0.0937	0.0281	-0.0143 0.0088)
S OF $p_{-r}^n \pi_r^n$ (r OD) Coefficients of H/h	<u>π</u>	OT.	0.0412	-0.1459	0.0306	-0.0156	0.0091	-0.1138	0.0235	-0.0138	0.0083	0.0015	-0.0037	0.0024	-0.2443	0.0747	0.0196	-0.0028	0.0018	-0.0012	0.1094	0.0179	-0.0053	0.0037	-0.0028	0.0646	-0.0184	0900.0	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
. Values C	7	H	-0.1115	-0.0501	0.0165	-0.0081	0.0048	-0.0720	0.0195	-0.0097	0.0057	-0.0002	-0.0015	0.0011	-0.0784	0.0824	0.0038	0.0014	-0.0005	0.0002	0.0649	0.0219	-0.0062	0.0036	-0.0024	0.0350	$6600 \cdot 0 -$	0.0054 -0.0034	4 5 000
Fable XX b	13	7.	0.4944	0900.0	0.0230	-0.0115	0.0073	-0.1935	0.0637	-0.0287	0.0168	-0.0031	-0.0024	0.0023	-0.0014	0.2307	-0.0121	8600.0	-0.0045	0.0024	0.1068	0.0742	-0.0227	0.0123	-0.0079	0.0748	-0.0229'	0.0128 - 0.0089	10000
H	GI.	77	-0.2173	-0.0519	0.0019	-0.0005	-0.0001	0.0821	-0.0290	0.0124	-0.0072	0.0022	0.0005	9000.0	-0.0369	-0.0316	0.0076	-0.0027	0.0012	$9000 \cdot 0 -$	0.0042	-0.0295	0.0106	-0.0055	0.0034	-0.0226	0.0082	-0.0046	0 2 000 0
	R - 11	h = 11	-0.0662	-0.0358	0.0048	-0.0020	6000.0	0.0451	-0.0149	0.0064	-0.0036	0.0015	0.0001	-0.0002	8900.0	0.0533	-0.0011	0.0020	-0.0011	0.0007	0.0314	-0.0119	0.0055	-0.0028	0.0017	-0.0079	0.0037	-0.0020	5 TOO O
		•	က	50	7	6	11	5	7	6	11	7	6	11	23	4	9	œ	10	12	4	9	œ	10	12	9	œ	01 6	7
	ş	2	67					4				9			_						က					5			

Vol. CCXXXVII. A.

351

Table XXI A. Values of ϕ

		Coefficien	ts of H/h .co	os s $ heta\cos n\chi$. e^i	σt	Coef	ficients of —	H/h . $i\sin s heta$ c	$\cos n\chi \cdot e^{i\sigma t}$
β	s	n = 0	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	4	6	s	n = 1	3	5
1	0	-0.0388	0.0569	0.0002		1	0.6747		
-	$\overset{\circ}{2}$	-0.1159	-0.0582	-0.0002		$rac{1}{3}$	0.0444	0.0005	
	$\frac{2}{4}$	-0.0018	0.0016	0 0002		5	-0.0039	-0.0004	
	$\bar{6}$	0.0003	-0.0003			7	0.0008	0.0002	
	8	-0.0001	0 0000			$\dot{9}$	-0.0003	-0.0001	
	10	0,0002				11	0.0002	0 0002	
	$\tilde{1}\tilde{2}$						0 0002		
2	0	-0.2181	-0.1001	-0.0006		1	-4.3594	-0.0109	
_	$\overset{\circ}{2}$	-0.6582	0.1103	0.0009		$\tilde{3}$	0.0564	0.0001	
	$egin{array}{c} 0 \ 2 \ 4 \end{array}$	0.0214	-0.0132	-0.0002		$egin{array}{c} 1 \ 3 \ 5 \end{array}$	-0.0087	0.0031	
	$\bar{6}$	-0.0049	0.0042	-0.0002		7	0.0023	-0.0010	
	8	0.0016	-0.0015	0.0001		9	-0.0009	0.0006	
	10	-0.0007	0.0006			11	0.0005	-0.0003	
	12	0.0003	-0.0003	•			* * * * * *		
3	0	-0.0926	0.0516	0.0003		1	-0.2476	-0.0054	
	$\begin{matrix} 0 \\ 2 \\ 4 \end{matrix}$	-0.2780	-0.0530	-0.0003		3	0.0439	0.0024	
		0.0008	0.0010	-0.0001		3 5	-0.0040	-0.0005	
	6	-0.0007	0.0003	0.0001		7	0.0010	0.0001	
	8	0.0002	-0.0001			9	-0.0003		
	10	-0.0001	0.0002			11	0.0002		
	12								
4	. 0	-0.1075	0.0952	0.0007		1	-0.0229	-0.0114	
	2	-0.3221	-0.0993	-0.0007		3 5	0.0327	0.0055	
	4	-0.0022	0.0042	-0.0002		5	-0.0026	-0.0013	
	6	-0.0003	-0.0002	0.0003		7	0.0005	0.0003	
	8	0.0001	0.0001	-0.0001		9	-0.0003	-0.0002	
	10					11	0.0001	0.0001	
	12								
5	0	-0.1611	0.2280	0.0017		1	0.0627	-0.0389	-0.0005
	$\frac{2}{4}$	-0.4818	-0.2384	-0.0016		$\frac{3}{5}$	-0.0167	0.0175	0.0004
	4	-0.0080	0.0114	-0.0007		5	0.0017	-0.0038	
	6	0.0001	-0.0013	0.0009		7	-0.0005	0.0011	-0.0001
	8	-0.0001	0.0005	-0.0004		9	0.0002	-0.0005	
	10		-0.0003	0.0002		11	-0.0001	0.0002	
	12		0.0001	-0.0001			-		

Table XXI B. Values of ϕ

		Coefficients	s of H/h . cos	$s\theta\cos n\chi \cdot e^{i\phi}$	r t	Coeff	icients of —	$H/h \cdot i \sin s\theta$	$\cos n\chi \cdot e^{i\sigma t}$
β	s	n = 0	2	4	6	s	n = 1	3	5
6	0	0.4337	-1.7083	-0.0107	-0.0002	. 1	0.5797 .	0.4247	0.0064
	2	1.2917	1.7630	0.0076	0.0001	3	0.7806	-0.1710	-0.0023
	4	0.0485	-0.0667	0.0097	0.0001	5	-0.0560		-0.0002
	6	-0.0053	0.0169	-0.0088		7	0.0151	-0.0107	0.0007
	8	0.0019	-0.0060	0.0033		9	-0.0051	0.0051	-0.0005
	10	-0.0007	0.0027	-0.0019		11	0.0031	-0.0022	0.0001
	12	0.0005	-0.0016	0.0008					
7	0	-0.0675	-0.2571	-0.0006		1	0.4003	0.0928	0.0015
	2	-0.2021	0.2569	-0.0006		3	0.1852	-0.0342	-0.0005
	4	-0.0016	-0.0025	0.0025		5	-0.0119	0.0037	-0.0001
	6	-0.0013	0.0036	-0.0018		7	0.0033	-0.0019	0.0002
	8	0.0003	-0.0012	0.0006		9	-0.0011	0.0010	-0.0001
	10	-0.0002	0.0005	-0.0004		11	0.0007	-0.0004	
٠	12	0.0002	-0.0002	0.0003					
8	0	-0.1742	-0.2199	0.0012		1	0.6607	0.1137	0.0019
	2	-0.5190	0.2094	-0.0033		3	0.1499	-0.0400	-0.0006
	4	-0.0175	0.0073	0.0037		5	-0.0096	0.0030	-0.0003
	6	-0.0009	0.0041	-0.0021		7	0.0028	-0.0018	0.0003
	8	0.0002	-0.0011	0.0007		9	-0.0010	0.0008	-0.0002
	10	-0.0001	0.0005	-0.0004		11	0.0005	-0.0003	0.0001
	12	0.0001	-0.0003	0.0002					
9	0	-0.6263	-0.5126	0.0013	0.0003	1	$2 \cdot 1443$	0.3850	0.0069
	2	-1.8581	0.4704	-0.0212	-0.0005	3	0.0510	-0.1381	-0.0018
	4	-0.1036	0.0318	0.0154	0.0002	5	-0.0143	0.0104	-0.0013
	. 6	-0.0004	0.0128	-0.0072	-0.0001	7	0.0045	-0.0045	0.0013
	8	-0.0005	-0.0030	0.0024	-0.0001	9	-0.0015	0.0022	-0.0007
	10	0.0001	0.0015	-0.0015	0.0001	11	0.0010	-0.0010	0.0002
	12		-0.0009	0.0008	0.0001		*		
10	0	0.3948	0.2736	-0.0173	-0.0005	1	-1.2553	-0.3286	-0.0056
	2	1.1628	-0.2614	0.0282	0.0007	$\frac{3}{5}$	0.3739	0.1268	0.0013
	4	0.1082	-0.0036	-0.0156	-0.0003	5	0.0045	-0.0135	0.0013
	6	-0.0023	-0.0105	0.0062	0.0001	7	-0.0005	0.0032	-0.0014
	8	0.0012	0.0023	-0.0022	0.0001	9	0.0002	-0.0016	0.0008
	10	-0.0003	-0.0010	0.0013	-0.0001	11	-0.0001	0.0007	-0.0002
	12	0.0002	0.0006	-0.0006					

Table XXI c. Values of ϕ

		Coefficie	nts of H/h .	$\cos s\theta \cos n\chi$.	$e^{i\sigma t}$		ficients of -	$-H/h \cdot i \sin st$	$\cos n\chi \cdot e^{i\sigma t}$
β	s	n = 0	2	4	6	S	n = 1	3	5
11	. 0	0.1031	0.0690	-0.0172	-0.0004	1	-0.2579	-0.2040	-0.0029
	2	0.2972	-0.0920	0.0258	0.0006	3	0.3990	0.0850	0.0004
	4	0.0620	0.0279	-0.0114	-0.0002	5	0.0049	-0.0123	0.0011
	6	-0.0025	-0.0062	0.0039		7	0.0003	0.0020	-0.0010
	8	0.0010	0.0014	-0.0015	0.0001	9	-0.0001	-0.0010	0.0006
	10	-0.0003	-0.0006	0.0009	-0.0001	11	0.0001	0.0005	-0.0002
	12	0.0002	0.0005	-0.0005					
12	. 0	-0.0465	-0.0625	-0.0482	-0.0013	1	0.3668	-0.3845	-0.0037
	2	-0.1537	-0.0428	0.0683	0.0018	3	0.7252	0.1648	-0.0008
	4	0.0732	0.1130	-0.0249	-0.0005	5	0.0192	-0.0262	0.0028
	6	-0.0052	-0.0104	0.0069	-0.0001	7	-0.0007	0.0044	-0.0023
	8	0.0011	0.0033	-0.0032	0.0003	9	0.0002	-0.0023	0.0014
	10	-0.0004	-0.0014	0.0018	-0.0002	11	-0.0001	0.0010	-0.0004
	12	0.0003	0.0008	-0.0007					
13	0	0.3804	0.5426	0.1555	0.0044	1	-1.7610	0.9089	0.0021
	2	1.1460	-0.2142	-0.2138	-0.0059	3	-0.8969	-0.3722	0.0068
	4	-0.0283	-0.3418	0.0682	0.0013	5	-0.0519	0.0536	-0.0095
	6	0.0090	0.0208	-0.0149	0.0008	7	0.0056	-0.0119	0.0066
	8	-0.0010	-0.0090	0.0076	-0.0010	9	-0.0017	0.0061	-0.0037
	10	0.0003	0.0037	-0.0044	0.0006	11	0.0009	-0.0029	0.0011
	12	-0.0001	-0.0021	0.0018	-0.0002				
14	0	0.1224	0.2924	0.0714	0.0021	1	-0.5420	0.3271	-0.0025
	2	0.3588	-0.1840	-0.0972	-0.0027	3	0.0934	-0.1197	0.0051
	4	0.0419	-0.1119	0.0291	0.0005	5	-0.0059	0.0114	-0.0048
	6	0.0015	0.0062	-0.0051	0.0005	7	0.0020	-0.0048	0.0029
	8	0.0004	-0.0033	0.0028	-0.0005	9	-0.0007	0.0023	-0.0015
	10	-0.0002	0.0014	-0.0016	0.0003	11	0.0002	-0.0011	0.0004
	12	0.0002	-0.0008	0.0006	-0.0002				
15	0	0.0657	0.5135	0.1318	0.0041	1	-0.3172	0.4930	-0.0105
	2	0.1704	-0.4174	-0.1802	-0.0053	3	0.7397	-0.1544	0.0130
	4	0.1329	-0.0998	0.0544	0.0006	5	0.0350	0.0037	-0.0103
	6	0.0004	0.0080	-0.0090	0.0012	7	0.0002	-0.0087	0.0056
	8	0.0014	-0.0052	-0.0044	-0.0012	9	-0.0001	0.0036	-0.0029
	10	-0.0004	0.0021	-0.0026	0.0006	11	0.0003	-0.0018	0.0009
	12	0.0003	-0.0012	0.0012					

Table XXI d. Values of ϕ

		Coefficien	its of H/h . co	$\cos s\theta \cos n\chi$. e	$i\sigma t$	Coef	ficients of -	$-H/h \cdot i \sin st$	$\theta\cos n\chi \cdot e^{i\sigma t}$
β	s	n = 0	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	4	6	s	n = 1	3	5
16	0	0.0979	-0.6250	-0.1915	-0.0061	1	-0.3593	-0.5921	0.0245
	$\check{2}$	0.3416	0.6426	0.2649	0.0076	$\ddot{3}$	-1.4522	0.1595	-0.0247
	$\overline{f 4}$	-0.2393	-0.0137	-0.0837	-0.0005	5	-0.1209	0.0082	0.0168
	$ar{6}$	° 20 ° °	-0.0097	0.0140	-0.0021	7	0.0060	0.0127	-0.0084
	8	-0.0021	0.0058	-0.0057	0.0019	9	-0.0023	-0.0045	0.0043
	10	0.0007	-0.0023	0.0034	-0.0011	11	0.0008	0.0022	-0.0013
	12	-0.0005	0.0023	-0.0014	0.0003				
17	0	0.0600	-0.1290	-0.0542	-0.0017	1	-0.2492	-0.1348	0.0102
	2	0.1955	0.1764	0.0765	0.0021	3	-0.4244	0.0332	-0.0090
	4	-0.0769	-0.0459	-0.0259		5	-0.0523	0.0026	0.0054
	6	-0.0005	-0.0027	0.0047	-0.0008	7	0.0034	0.0038	-0.0025
	8	-0.0004	0.0014	-0.0015	0.0007	9	-0.0012	-0.0011	0.0013
	10	0.0002	-0.0005	0.0009	-0.0003	11	0.0006	0.0005	-0.0004
	12	-0.0002	0.0003	-0.0005					
18	0	0.0450	-0.0474	-0.0356	-0.0011	1	-0.2041	-0.0653	0.0095
	2	0.1465	0.1039	0.0514	0.0012	3	-0.2420	0.0172	-0.0073
	4	-0.0565	-0.0549	-0.0189	0.0001	5	-0.0434	-0.0003	0.0039
	6	-0.0012	-0.0021	0.0037	-0.0006	7	0.0031	0.0026	-0.0017
	8	-0.0001	0.0006	-0.0010	0.0005	9	-0.0011	-0.0007	0.0000
	10		-0.0002	0.0006	-0.0003	11	0.0005	0.0003	-0.0003
	12		0.0001	-0.0002	0.0002				
19	0	0.0328	-0.0056	-0.0322	-0.0008	1	-0.1741	-0.0349	0.0123
	2	0.1098	0.0757	0.0477	0.0009	3	-0.1538	0.0138	-0.0083
	4	-0.0565	-0.0682	-0.0190	0.0002	5	-0.0436	-0.0042	0.0038
	6	-0.0020	-0.0023	0.0041	-0.0006	7	0.0031	0.0025	-0.0016
	8	0.0001	0.0004	-0.0010	0.0005	9	-0.0011	-0.0007	0.0009
	10		-0.0002	0.0006	-0.0003	11	0.0006	0.0003	-0.0003
	12		0.0002	-0.0002	0.0001			-	
20	0	0.0173	0.0403	-0.0397	-0.0006	1	-0.1526	-0.0070	0.0211
	$^{\cdot}$ 2	0.0674	0.0625	0.0601	0.0005	3	-0.0814	0.0171	-0.0129
	4	-0.0761	-0.0997	-0.0258	0.0006	5	-0.0518	-0.0125	0.0050
	6	-0.0040	-0.0034	0.0062	-0.0009	7	0.0037	0.0031	-0.0021
	8	0.0003	0.0004	-0.0014	0.0007	9	-0.0011	-0.0010	0.0013
	10	-0.0001	-0.0002	0.0009	-0.0004	11	0.0006	0.0005	-0.0004
	12	0.0002	0.0001	-0.0003	0.0001				

Table XXII a. Values of ψ

		Coefficients of	$fH/h \cdot \cos s\theta \sin \theta$	$n\chi \cdot e^{i\sigma t}$	Co	pefficients of	$-H/h \cdot i \sin s\theta$ s	in $n\chi$. $e^{i\sigma t}$
β	s	n=2	4	6	s	n = 1	$\overline{3}$	5
1	1	-0.0531			2	-0.0495	0.0150	
_	$\tilde{3}$	0.0564	-0.0002		4	-0.0161	-0.0106	
	$\frac{3}{5}$	-0.0048	0.0003		6	0.0024	0.0033	
	7	0.0018	-0.0002		. 8	-0.0008	-0.0013	
	9	-0.0009	0.0002		10	0.0004	0.0009	
	11	0.0006	-0.0001		12	-0.0003	-0.0005	
2	1	0.2462	0.0016		2	-0.1110	-0.0284	-0.0003
	3	-0.2930	-0.0023		4	-0.0892	0.0226	0.0003
	5	0.0675	0.0005		6	0.0205	-0.0100	-0.0001
	7	-0.0251	0.0004		8	-0.0089	0.0045	
	9	0.0124	-0.0004		10	0.0041	-0.0030	
	11	-0.0080	0.0002		12	-0.0032	0.0017	
3	1	0.0004	0.0005		2	-0.0783	0.0118	
	3	-0.0063	-0.0011		4	-0.0366	-0.0080	
	5	0.0083	0.0007		6	0.0063	0.0022	
	7	-0.0029	-0.0003		8	-0.0026	-0.0008	
	9	0.0014	0.0003		10	0.0011	0.0004	
	11	-0.0009	-0.0001		12	-0.0009	-0.0002	
4	1	-0.0136	0.0009		${ 2 \atop 4 }$	-0.0962	0.0211	0.0003
	$\begin{array}{c} 3 \\ 5 \\ 7 \end{array}$	0.0108	-0.0020		4	-0.0400	-0.0150	-0.0003
	5	0.0037	0.0015		6	0.0058	0.0046	0.0001
		-0.0011	-0.0007		8	-0.0024	-0.0017	
	9	0.0006	0.0005		10	0.0011	0.0011	
	11	-0.0004	-0.0002		12	-0.0008	-0.0006	
5	1	-0.0186	0.0030		2	-0.1518	0.0486	0.0008
	3	0.0209	-0.0062		4	-0.0502	-0.0347	-0.0005
	5	-0.0036	0.0044		6	0.0052	0.0113	0.0001
	. 7	0.0015	-0.0021		. 8	-0.0022	-0.0045	0.0001
	9	-0.0008	0.0015		10	0.0009	0.0029	-0.0001
	11	0.0006	-0.0006		12	-0.0007	-0.0016	

Table XXII B. Values of ψ

	Co	pefficients of <i>H</i>	$H/h \cdot \cos s\theta \sin n$	$\chi . e^{i\sigma t}$	Coefficients of $-H/h \cdot i \sin s\theta \sin n\chi \cdot e^{i\sigma t}$						
β	s	n=2	$\frac{}{4}$	6	s	n = 1	3	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$			
6	1	-0.0682	-0.0355	-0.0009	2	0.5329	-0.3529	-0.0059			
	$\ddot{3}$	0.0012	0.0674	0.0017	4	0.0043	0.2484	0.0035			
	5	0.0932	-0.0428	-0.0013	6	0.0208	-0.0811	0.0001			
	7	-0.0310	0.0189	0.0005	8	-0.0103	0.0341	-0.0013			
	9	0.0156	-0.0135		10	0.0049	-0.0218	0.0016			
	11	-0.0108	0.0055		12	-0.0043	0.0120	-0.0007			
7	1	-0.0451	-0.0082	-0.0002	. 2	-0.0153	-0.0528	-0.0008			
	3	0.0305	0.0149	0.0004	4	-0.0633	0.0353	0.0002			
	5	0.0196	-0.0087	-0.0003	6	0.0114	-0.0107	0.0004			
	7	-0.0060	0.0035	0.0001	8	-0.0055	0.0050	-0.0004			
	9	0.0030	-0.0025		10	0.0025	-0.0033	0.0004			
	11	-0.0020	0.0010		12	0.0021	0.0018	-0.0002			
8	1	-0.0593	-0.0102	-0.0003	2	-0.0864	-0.0465	-0.0003			
	3	0.0479	0.0182	0.0006	4	-0.1097	0.0288	-0.0004			
	5	0.0149	-0.0102	-0.0004	6	0.0149	-0.0075	0.0006			
	7	-0.0042	0.0039	0.0001	. 8	-0.0076	0.0040	-0.0005			
	9	0.0022	-0.0028		10	0.0034	-0.0026	0.0005			
	11	-0.0015	0.0011		12	0.0027	0.0014	-0.0002			
9	1	-0.1267	-0.0341	-0.0010	2	-0.3063	-0.1163	0.0012			
	3	0.1221	0.0610	0.0020	4	-0.3585	0.0679	-0.0035			
	5	0.0069	-0.0346	-0.0013	6	0.0380	-0.0153	0.0033			
	7	-0.0025	0.0130	0.0002	8	-0.0213	0.0040	-0.0026			
	9	0.0018	-0.0088	0.0001	10	0.0095	-0.0060	0.0021			
	11	-0.0016	0.0035		12	0.0078	0.0034	-0.0007			
10	1	0.0034	0.0273	0.0009	2	0.1627	0.0686	-0.0031			
	3	-0.0283	-0.0503	-0.0017	4	0.2175	-0.0417	0.0050			
	5	0.0290	0.0303	0.0010	6	-0.0157	0.0111	-0.0038			
	7	-0.0052	-0.0120	-0.0001	8	0.0110	-0.0063	0.0027			
	9	0.0021	0.0077	-0.0001	10	-0.0048	0.0041	-0.0021			
	11	-0.0010	-0.0030		12	0.0039	-0.0023	0.0007			

Table XXII c. Values of ψ

		Coefficients of	$H/h \cdot \cos s\theta \sin s$	$n\chi \cdot e^{i\sigma t}$	Coefficients of $-H/h \cdot i \sin s\theta \sin n\chi \cdot e^{i\sigma t}$				
β	S	n = 2	4	6	S	n = 1	3	5	
11	1	-0.0597	0.0155	0.0005	2	0.0224	0.0205	-0.0037	
	3	0.0342	-0.0298	-0.0010	4	0.0553	-0.0175	0.0049	
	5	0.0286	0.0193	0.0006	6	-0.0005	0.0085	-0.0032	
	7	-0.0040	-0.0081		8	0.0019	-0.0038	0.0020	
	9	0.0017	0.0051	-0.0001	10	-0.0009	0.0024	-0.0015	
	11	-0.0008	-0.0020		12	0.0008	-0.0013	0.0005	
12	1	-0.1661	0.0275	0.0008	2	-0.0441	-0.0077	-0.0116	
	3	0.1258	-0.0541	-0.0015	4	-0.0304	-0.0154	0.0135	
	-5	0.0413	0.0363	0.0008	6	0.0071	0.0201	-0.0077	
	7	-0.0016	-0.0157	0.0003	- 8	-0.0025	-0.0074	0.0045	
	9	0.0005	0.0100	-0.0005	10	0.0010	0.0048	-0.0035	
	11	0.0001	-0.0040	0:0001	12	-0.0006	-0.0027	0.0012	
13	1	0.3284	-0.0667	-0.0012	2	0.0659	0.1122	0.0404	
	3	-0.3086	0.1280	0.0025	4	0.2365	-0.0057	-0.0438	
	5	-0.0038	-0.0824	-0.0009	6	-0.0094	-0.0493	0.0230	
	7	-0.0186	0.0350	-0.0018	8	0.0092	0.0157	-0.0126	
	9	0.0096	-0.0232	0.0018	10	-0.0038	-0.0107	0.0098	
	. 11	-0.0070	0.0093	-0.0004	12	0.0024	0.0063	-0.0034	
14	1	0.0509	-0.0265	-0.0002	2	-0.0507	0.0593	0.0192	
	3	-0.0802	0.0480	0.0005	4	0.0872	-0.0145	-0.0203	
	5	0.0405	-0.0279	0.0002	6	0.0046	-0.0143	0.0103	
	7	-0.0134	0.0111	-0.0011	8	0.0013	0.0043	-0.0054	
	9	0.0068	-0.0079	0.0009	10	-0.0004	-0.0032	0.0041	
	11	-0.0046	0.0032	-0.0003	12	0.0002	0.0019	-0.0014	
15	1	-0.0400	-0.0446		2	-0.2115	0.0927	0.0354	
	3	-0.0568	0.0765	-0.0002	4	0.0846	-0.0340	-0.0375	
	5	0.1173	-0.0393	0.0014	6	0.0199	-0.0118	0.0192	
	7	-0.0249	0.0141	-0.0028	8	-0.0026	0.0035	-0.0099	
	9	0.0132	-0.0113	0.0021	10	0.0014	-0.0033	0.0072	
	11	-0.0088	0.0046	-0.0005	12	-0.0012	0.0022	-0.0024	

Table XXII d. Values of ψ

	$\mathbf{C}_{\mathbf{C}}$	efficients of I	$H/h \cdot \cos s\theta \sin n$	χ . $e^{i\sigma t}$	Coefficients of $-H/h \cdot i \sin s\theta \sin n\chi \cdot e^{i\sigma t}$				
β	s	n = 2	4	6	s	n = 1	3	5	
16	1	0.1686	0.0597	-0.0008	2	0.3880	-0.0855	-0.0507	
	3	0.0004	-0.0982	0.0019	4	-0.0272	0.0457	0.0549	
	5	-0.1919	0.0455	-0.0035	6	-0.0371	-0.0011	-0.0288	
	7	0.0288	-0.0149	0.0051	8	0.0084	-0.0006	0.0148	
	9	-0.0164	0.0135	-0.0035	10	-0.0041	0.0020	-0.0107	
	11	0.0105	-0.0056	0.0008	12	0.0034	-0.0017	0.0036	
17	1	0.0594	0.0148	-0.0005	2	0.1085	-0.0066	-0.0139	
	3	-0.0111	-0.0240	0.0011	4	0.0091	0.0092	0.0155	
	5	-0.0521	0.0106	-0.0015	6	-0.0109	-0.0044	-0.0086	
	7	0.0050	-0.0034	0.0018	8	0.0030	0.0005	0.0044	
	9	-0.0034	0.0034	-0.0012	10	-0.0014		-0.0031	
	11	0.0022	-0.0014	0.0003	12	0.0011	-0.0001	0.0011	
18	1	0.0370	0.0077	-0.0006	2	0.0575	0.0084	-0.0088	
	3	-0.0090	-0.0127	0.0013	4	0.0099	0.0022	0.0103	
	5	-0.0286	0.0059	-0.0014	6	-0.0067	-0.0049	-0.0058	
	7	0.0010	-0.0022	0.0014	8	0.0019	0.0006	0.0031	
	9	-0.0013	0.0021	-0.0009	10	0.0008	-0.0001	-0.0022	
	11	0.0009	-0.0008	0.0002	12	0.0006		0.0007	
19	1	0.0253	0.0043	-0.0010	2	0.0309	0.0196	-0.0075	
	3	-0.0065	-0.0079	0.0018	4	0.0066	-0.0022	0.0093	
	5	-0.0178	0.0047	-0.0017	6	-0.0055	-0.0054	-0.0056	
	7	-0.0009	-0.0023	0.0016	8	0.0013	0.0005	0.0030	
	9	-0.0003	0.0020	-0.0010	10	-0.0006	-0.0002	-0.0021	
	11	0.0002	-0.0008	0.0003	12	0.0005		0.0007	
20	1	0.0165	0.0010	-0.0018	2	0.0053	0.0377	-0.0087	
	3	-0.0046	-0.0042	0.0035	4	-0.0006	-0.0089	0.0113	
	5	-0.0093	0.0052	-0.0029	6	0.0059	-0.0068	-0.0073	
	7	-0.0028	-0.0036	0.0023	8	0.0010	0.0003	0.0040	
	9	0.0005	0.0027	-0.0014	10	0.0005	0.0001	-0.0028	
	11	-0.0003	-0.0011	0.0003	12	0.0002	-0.0002	0.0010	

46 Vol. CCXXXVII A.

Table XXIII a. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

		Coe	fficients of	$\cos s\theta \cos n\chi$		Coefficients of $-i\sin s\theta \cos n\chi$ $(s>0)$ Coefficients of $-i\theta \cos n\chi$ $(s=0)$				
β	s	n = 0	2	4	$\overline{}_{6}$		n = 1	3	5	7
1	0	0.4666	-0.5694	0.0036			-0.0702	0.0698	0.0004	
_	$\overset{\circ}{2}$	0.8659	0.2020	0.0002			-0.9431	-0.0567	-0.0002	
	4	0.0018	0.0017	-0.0004			-0.0125	0.0126	-0.0001	
	$\overline{6}$	-0.0003	-0.0007	0.0001			0.0016	-0.0017	0.0001	
	8	0.0001	0.0002	-0.0001			-0.0007	0.0008	-0.0001	
	10		-0.0002	0.0001			0.0004	-0.0004	0.0001	
	12						-0.0001	0.0002		
	1	-0.3621	0.3696	-0.0075			-0.5469	-0.0408		
	3	-0.0045	-0.0018	0.0063			-0.0348	0.0159		•"
	5	0.0043	-0.0011	-0.0032			0.0032	-0.0025		
	7	-0.0008	-0.0003	0.0011			-0.0006	0.0006		
	9	0.0003	0.0002	-0.0005			0.0003	-0.0002		
	11	-0.0002	-0.0002	0.0004			-0.0001	0.0003		
	13	0.0001		-0.0001						
2	0	-1.470	3.259	0.007			0.323	-0.320	-0.003	
_	$\overset{\circ}{2}$	2.066	1.014	- 0.011			-1.392	0.388	0.004	
	$\overline{4}$	-0.043	-0.067	-0.002			0.159	-0.157	-0.001	
	6	0.009	0.019				-0.044	0.044		
	8	-0.003	-0.001				0.018	-0.019		
	10	0.001	0.005				-0.010	0.010		
	12	-0.001	0.001				0.004	-0.004		
	1	4.248	-4.244	-0.005			9.470	0.173	0.002	
	$\frac{3}{5}$	-0.041	0.066	-0.024			-0.011	-0.063	-0.001	
		0.049	-0.067	0.017			0.007	0.010		
	7	-0.014	0.021	-0.007				-0.003		
	9	0.006	-0.010	0.004			0.001	0.001		
	11	-0.004	0.006	-0.002				0.001		
	13	0.001	-0.002	0.001						

Table XXIII B. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

	Coe	fficients of	$\cos s\theta \cos n\chi$		Coefficients of $-i\sin s\theta\cos n\chi$ $(s>0)$ Coefficients of $-i\theta\cos n\chi$ $(s=0)$				
β s	n = 0	2	4	6	n=1	3	5	7	
3 0 2 4 6 8 10 12	0·385 1·584 -0·002 0·002 -0·001	$ \begin{array}{c} -0.166 \\ 0.412 \\ -0.021 \\ 0.004 \\ -0.001 \\ 0.001 \end{array} $	0.028 0.007 -0.003 -0.001		$\begin{array}{c} -0.155 \\ -0.928 \\ 0.010 \\ -0.008 \\ 0.003 \\ -0.002 \\ 0.001 \\ \hline 1.409 \end{array}$	0·153 -0·073 -0·009 0·007 -0·003 0·001 -0·001	0·001 -0·001 0·001		
3 5 7 9 11 13	-0.019 0.029 -0.006 0.003 -0.002 0.001	0.002 -0.022 0.004 -0.002 0.001	0.017 -0.007 0.002 -0.001		-0.066 0.007 -0.001 0.001	0·031 -0·004 0·001		·	
$\begin{array}{ccc} 4 & 0 & \\ & 2 & \\ & 4 & \\ & 6 & \\ & 8 & \\ 10 & \\ 12 & \end{array}$	0·739 2·038 0·009 0·001	$-0.717 \\ 0.538 \\ -0.028 \\ 0.003 \\ -0.001 \\ 0.001$	0.070 0.017 -0.008 0.001 -0.001 0.001		$-0.394 \\ -0.778 \\ -0.008 \\ -0.004 \\ 0.002 \\ -0.001$	$0.390 \\ -0.222 \\ 0.012 \\ 0.002$	0.005 0.001 -0.004 0.003 -0.001 0.001		
1 3 5 7 9 11 13	$\begin{array}{c} -0.147 \\ -0.011 \\ 0.040 \\ -0.008 \\ 0.003 \\ -0.002 \\ 0.001 \end{array}$	$0.257 \\ -0.034 \\ -0.021 \\ 0.002 \\ -0.001$	$\begin{array}{c} -0.110 \\ 0.045 \\ -0.019 \\ 0.006 \\ -0.003 \\ 0.002 \\ -0.001 \end{array}$	-0.001 0.001	1.152 -0.034 0.005 0.001	$\begin{array}{c} -0.182 \\ 0.071 \\ -0.011 \\ 0.003 \\ -0.001 \\ 0.001 \end{array}$	-0.004 0.003 -0.001		

Table XXIII c. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

	Co	efficients of	$\cos s\theta \cos n\chi$	Coefficients of $-i\sin s\theta\cos n\chi$ $(s>0)$ Coefficients of $-i\theta\cos n\chi$ $(s=0)$				
β s	n = 0	2	4	$\overline{6}$	n=1	3	5	7
5 0	1.341	-1.953	0.268	0.006	-1.164	1.150	0.013	
$\overset{\circ}{2}$	3.159	1.256	0.068	0 000	-0.353	-0.652	0.006	
$\overline{\overset{-}{4}}$	0.040	-0.046	-0.029		-0.039	0.054	-0.014	
$ar{6}$	-0.001	0.002	0.004		0.007	-0.016	0.009	
8	0.001	-0.002	-0.003		-0.003	0.008	-0.005	
10			0.001		0.002	-0.005	0.003	
12					-0.001	0.002	-0.001	
1	-0.536	0.950	-0.405	-0.008	1.675	-0.466	-0.018	
3	0.057	-0.199	0.139	0.003	0.240	0.178	0.005	
5	0.057		-0.057	-0.001	-0.015	-0.029	-0.001	
7	-0.008	-0.011	0.020		0.005	0.008	0.001	
9	0.004	0.006	-0.010		-0.001	-0.002	0.001	
11	-0.002	-0.004	0.006		0.001	0.003		
13	0.001	0.001	-0.002					
6 0	-2.95	13.59	-3.21	-0.06	10.15	-10.07	-0.07	
$egin{array}{ccc} 0 & 0 & 0 \\ 2 & & 2 \end{array}$	-7.00	-11.15	-0.89	-0.03	-6.23	5.37	-0.13	
$\frac{2}{4}$	-0.29	11 10	0.32	0.01	$0.\overline{27}$	-0.46	0.18	
$\dot{6}$	0.03		-0.03	-0.01	-0.19	$0.\overline{29}$	-0.10	
8	-0.01	0.02	0.03	0 0 2	0.07	-0.12	0.05	
10	0 0 2	0.01	-0.02		- 0.04	0.07	-0.03	
12		0.01			$0.0\overline{2}$	- 0.02	0.01	
1	-0.14	-4.74	4.77	0.11	-10.06	3.26	0.12	
3	-1.30	$2 \cdot 66$	-1.34	-0.02	-4.74	-1.27	-0.05	
5	0.06	-0.56	0.49		0.31	0.26		
7	-0.05	0.23	-0.18		-0.07	- 0.06		
9	0.02	-0.11	0.09		0.03	0.01		
11	-0.01	0.06	-0.05		- 0.01	- 0.03		
13		-0.02	0.02					

Table XXIII d. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

		Coe	efficients of	$\cos s\theta \cos n\eta$		Coefficients of $-i \sin s\theta \cos n\chi \ (s>0)$ Coefficients of $-i\theta \cos n\chi \ (s=0)$					
β	s	n = 0	$\overline{}$	4	6	n=1	3	5	7		
7	0	1.250	1.513	-0.775	-0.020	1.721	-1.727	0.006			
	2	2.165	-2.180	-0.225	-0.008	-1.779	0.830	-0.049	-0.001		
	4	0.011	-0.084	0.076	0.004	0.007	-0.054	0.046	0.001		
	6	0.009	-0.002	-0.006	-0.001	-0.045	0.069	-0.023	-0.001		
	8	-0.002	0.005	0.006		0.018	-0.026	0.015			
	10	0.001	0.002	-0.003		-0.009	0.015	-0.006			
	12	-0.001	0.001	-0.002		0.003	-0.005	0.002			
	1	-1.455	0.295	1.130	0.029	-1.790	0.388	0.018			
	3	-0.346	0.609	-0.259	-0.004	-1.030	-0.154	-0.006			
	$\frac{3}{5}$	0.121	-0.200	0.080	-0.001	0.066	0.034	-0.002			
	7	-0.029	0.059	-0.031	0.002	-0.013	-0.008	0.001			
	9	0.014 .	-0.029	0.017	-0.002	0.007		-0.001			
	11	-0.008	0.017	-0.011	0.001	-0.002	-0.004	0.001			
	13	0.003	-0.006	0.003							
8	0	2.901	0.658	-1.065	-0.026	1.641	-1.680	0.039	0.001		
	2	4.902	-2.374	-0.300	-0.014	-1.635	0.726	-0.089	-0.002		
	4	0.140	-0.150	0.098	0.007	-0.049	-0.018	0.066	0.002		
	6	0.007	-0.014	-0.007	-0.002	-0.040	0.072	-0.031	-0.001		
	8	-0.002	0.006	0.008		0.013	-0.028	0.014			
	10	0.001	0.001	-0.004		-0.008	0.016	-0.008			
	12	-0.001	0.002	-0.002		0.003	-0.005	0.002			
	1	-2.988	1.438	1.511	0.039	-2.276	0.166	0.009			
	3	-0.377	0.676	-0.295	-0.003	-0.657	-0.066	0.005			
	5	0.219	-0.290°	0.075	-0.003	0.051	0.021	-0.004			
	7	-0.045	0.070	-0.028	0.003	-0.007	-0.005				
	9	0.022	-0.035	0.016	-0.002	0.007		-0.001			
	11	-0.012	0.020	-0.010	0.001		-0.004	0.001			
	13	0.005	0.008	0.003					e		

Table XXIII e. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

Coefficients of $\cos s\theta \cos n\chi$						Coefficients of $-i\sin s\theta\cos n\chi$ $(s>0)$ Coefficients of $-i\theta\cos n\chi$ $(s=0)$				
β	s	n = 0	2	4	6	n=1	3	5	7	
9	0	10.89	0.48	-4.03	-0.11	4.33	-4.61	0.27	0.01	
	2	17.47	-6.26	-1.04	-0.05	-2.56	1.99	-0.42	-0.02	
	4	0.93	-0.33	0.35	0.02	-0.26	-0.01	0.26	0.01	
	6		-0.10	-0.03	-0.01	-0.04	0.16	-0.12		
	8	0.01	0.03	0.03		0.01	-0.07	0.05		
	10		-0.01	-0.01		-0.01	0.04	-0.03		
	12		0.01	-0.01		•	-0.01	0.01		
	1	-11.03	5.31	5.57	0.15	-7.66	-0.37	-0.04		
	$\frac{3}{5}$	- 0.69	1.69	-0.99		1.58	0.18	0.06		
	5	0.76	-0.95	0.21	-0.02	0.06		-0.03		
	7	- 0.13	0.19	-0.08	0.02	0.01	-0.01			
	9	0.07	-0.10	0.05	-0.01	0.01		-0.01		
	11	-0.04	0.06	-0.03	0.01		-0.01			
	13	0.02	-0.02	0.01						
10	0	- 7.23	-0.85	3.85	0.09	-2.73	3.14	-0.40	-0.02	
	2	-10.88	2.93	0.81	0.05	0.20	-1.70	0.49	0.02	
	4	-1.08	-0.21	-0.30	-0.02	0.15	0.11	-0.26	-0.01	
	6	0.02	0.13	0.04		-0.06	-0.06	0.12		
	8	- 0.01	-0.03	-0.03		0.01	0.04	-0.05		
	10		0.01	0.01		-0.01	-0.02	0.03		
	12		-0.01	0.01			0.01	-0.01		
	1	7.09	-1.82	-5.15	-0.12	5.06	1.28	0.12		
	3	-0.17	-0.72	0.90	-0.01	-5.15	-0.56	-0.09		
	$\frac{3}{5}$	-0.49	0.64	-0.18	0.03	-0.02	0.06	0.04		
	7	0.07	-0.11	0.07	-0.02	-0.02	0.01	-0.01		
	9	-0.04	0.07	-0.04	0.01			0.01		
	11	0.02	-0.04	0.02	-0.01	-0.01	0.01			
	13	- 0.01	0.01	-0.01						

Table XXIII f. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

	Co	efficients of	$\cos s\theta \cos n\chi$	Coefficients of $-i\sin s\theta\cos n\chi \ (s>0)$ Coefficients of $-i\theta\cos n\chi \ (s=0)$				
β s	n = 0	2	4	6	n=1	3	5	7
11 (-1.916	-1.582	-2.694	-0.060	-0.923	1.344	-0.406	0.015
2		-0.051	0.398	0.264	-0.271	-1.157	0.413	0.015
4		-0.587	-0.189	-0.143	-0.049	0.239	-0.185	-0.006
ϵ		0.091	0.030	0.002	-0.067	-0.018	0.083	0.001
8	-0.011	-0.020	-0.018	0.001	0.013	0.026	-0.040	0.001
10	0.002	0.010	0.008	0.001	-0.006	-0.015	0.021	-0.001
12	-0.002	-0.006	0.006		0.002	0.004	-0.006	
1		1.937	-3.419	-0.059	1.099	1.663	0.142	
3			0.590	-0.021	-4.804	-0.677	-0.103	
5	-0.129	0.236	-0.135	0.027	-0.060	0.059	0.036	
7		-0.044	0.054	-0.018	-0.009	0.003	-0.005	
6		0.026	-0.030	0.011	0.001	0.003	0.006	
11		-0.015	0.016	-0.006	-0.003	0.002	-0.003	
13	-0.002	0.005	-0.005	0.001				
12 () 1.28	-4.92	5.67	0.05	0.25	0.99	-1.19	-0.05
		-3.22	0.50	0.04	0.07	-2.18	1.06	0.04
4		-1.84	-0.34	-0.02	-0.47	0.87	-0.40	-0.01
. 6		0.13	0.07		-0.09	-0.09	0.17	
8	-0.01	-0.04	-0.03			0.08	-0.09	
10)	0.02	0.02			-0.05	0.05	
12	2	-0.01	0.01			0.01	-0.01	
]	-2.47	9.34	6.83	-0.04	-2.73	$5 \cdot 21$	0.48	
9		0.45	$1 \cdot 12$	-0.08	-8.50	-1.96	-0.31	
Ē		0.13	-0.28	0.08	-0.25	0.10	0.10	
7		-0.06	0.13	-0.05	0.01		-0.01	
ę		0.03	-0.07	0.03		0.01	0.01	
11		-0.02	0.04	-0.01		0.01	-0.01	
13	3	0.01	-0.01	*				

Table XXIII g. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

		Co	efficients of	$\cos s\theta \cos n$	Y	Coeff Coeff	ficients of — efficients of	$-i\sin s\theta\cos n$ $-i\theta\cos n\gamma$	$e\chi(s>0)$ $(s=0)$
β	s	n=0	2	4	6	n=1	3	5	7
					Ū				
13	0	-9.10	12.94	-14.99	0.01	-5.99	1.73	4.08	0.18
	2	-14.15	11.57	-0.69	-0.01	-1.65	4.16	-3.38	-0.13
	4	0.37	4.70	0.71	0.03	1.85	-2.94	1.07	0.02
	6	-0.12	- 0.13	-0.17	0.01	-0.11	0.53	-0.43	0.01
	8	0.01	0.10	0.08	-0.01	0.10	-0.31	0.23	-0.02
	10		-0.01	-0.04		-0.06	0.17	-0.12	0.01
	12		0.03	0.02		0.02	-0.05	0.03	
	1	11.87	-28.87	$17 \cdot 19$	-0.19	15.07	$-17 \cdot 16$	-1.77	
	3	2.83	-0.67	-2.50	0.35	9.62	5.97	1.08	
	$\frac{3}{5}$	-0.58	0.20	0.65	-0.26	0.68	-0.10	-0.31	
	7	0.05	0.17	-0.37	0.14	-0.10	0.03	0.03	
	9	-0.04	-0.06	0.18	-0.08	0.03	-0.04	-0.04	
	11	0.02	0.04	-0.10	0.04	-0.02	-0.01	0.03	
÷	13	- 0.01	- 0.01	0.03	-0.01				

14	0.	- 3 ·00	3.86	-5.97	0.07	-3.92	1.82	2.00	0.09
	2	-4.28	$4 \cdot 25$	-0.13	0.02	-0.22	0.88	-1.60	-0.06
	4	-0.59	1.16	0.19	0.01	0.78	-1.23	0.44	0.01
	6	-0.02	0.02	- 0.05	0.01	-0.19	0.34	-0.16	0.01
	8	-0.01	0.03	0.03	-0.01	0.07	-0.15	0.08	-0.01
	10		0.01	-0.01		-0.04	0.08	-0.05	0.01
	12		0.01	- 0.01		0.02	-0.03	0.01	
	1	3.44	- 9.89	6.68	-0.22	6.41	-7.39	-0.88	
	3	0.31	0.32	-0.83	0.20	$-2 \cdot 17$	$2 \cdot 40$	0.52	
	5	-0.22	0.15	0.20	-0.13	0.05	0.03	-0.14	
	7	-0.01	0.08	-0.14	0.07	-0.03	0.03	0.01	
	9	-0.01	-0.02	0.07	-0.04	0.01	-0.02	-0.02	
	11		0.02	-0.04	0.02			0.01	
	13			0.01					

Table XXIII H. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

	C	oefficients o	$f \cos s\theta \cos n\chi$			cients of — fficients of -		$\begin{array}{c} \chi\left(s>0\right) \\ (s=0) \end{array}$	
β . s	n = 0	2	4	6		n=1	3	5	7
15 0	-1.56	3.61	-10.12	0.35	_	- 7.85	3.73	3.94	0.18
2	-1.81	5.31	0.03	0.08		1.89	0.33	-3.10	-0.12
4	-1.99	0.05	0.14	-0.02		1.08	-1.89	0.81	
6	-0.01	0.09	- 0.01	0.02	-	- 0.48	0.73	-0.25	0.03
8	-0.02	0.05	0.03	-0.02		0.15	-0.26	0.14	-0.02
10	0.01	0.02	-0.02			- 0.08	0.15	-0.08	0.01
12		0.02	-0.02			0.03	- 0·05	0.02	
1	0.79	-11.19	11.06	-0.66		8.04	-11.83	-1.64	
3	-0.90	1.65	-1.19	0.44	· ·	$-12 \cdot 12$	3.62	0.98	
, 5	-0.22	0.25	0.24	-0.28	_	- 0.63	0.11	-0.27	
. 7	-0.08	0.16	-0.21	0.13		0.01	0.10	0.02	
9	0.01	-0.05	0.11	-0.07		•	-0.04	-0.04	
11	-0.01	0.04	- 0.06	0.04			0.01	0.02	
13		- 0.01	0.02	-0.01					
16 0	-2.94	- 1.67	13.81	-0.79		10.67	- 4.31	-6.08	-0.29
$\frac{10}{2}$	-4.72	-4.64	-0.42	-0.20	_	- 6.48	0.53	$\begin{array}{c} -0.03 \\ 4.78 \end{array}$	0.17
$\frac{7}{4}$	3.83	2.92	0.11	0.06	_	- 0.91	2.10	-1.21	0.02
$\tilde{6}$, 00	$-\ 0.09$	-0.07	-0.04		0.80	-1.10	0.35	-0.05
8	0.03	-0.05	-0.04	0.03	_	- 0.19	$0.\overline{32}$	-0.18	0.05
10	-0.01	-0.03	0.02			0.11	-0.19	0.11	-0.02
12	0.01	- 0.04	0.02		-	- 0.04	0.07	-0.03	
1	5.98	7.55	-14.91	1.39		- 4.86	13.43	$2 \cdot 31$	
3	$2 \cdot 69$	-3.50	1.56	-0.76		23.84	-3.97	-1.41	
5	0.10	-0.29	-0.26	0.45		$2 \cdot 12$	- 0.10	0.41	
7	0.16	-0.20	0.26	-0.21	_	- 0.13	-0.20	-0.04	
9	-0.05	0.07	-0.14	0.12		0.04	0.07	0.06	
11	0.03	- 0.05	0.08	-0.06	-	- 0.02	-0.02	-0.03	
13	-0.01	0.02	-0.02	0.01					

Table XXIII 1. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

		Coo	efficients of	$\cos s\theta \cos n\chi$	Coefficients of $-i\sin s\theta \cos n\chi \ (s>0)$ Coefficients of $-i\theta \cos n\chi \ (s=0)$				
β	s	n = 0	2	4	6	n = 1	3	5	7
17	0	-1.807	0.071	3.713	-0.331	$2 \cdot 446$	-0.540	-1.821	-0.085
	$\dot{2}$	-2.574	-0.729	-0.294	-0.087	-2.696	0.212	1.440	0.045
	4	1.307	1.601	0.128	0.031	-0.046	0.399	-0.364	0.011
	6	0.009	0.003	-0.048	-0.017	0.217	-0.298	0.102	-0.021
	8	0.007	-0.014	-0.009	0.011	-0.038	0.073	-0.052	0.017
	10	-0.003	-0.006	0.004	-0.001	0.024	-0.047	0.030	-0.008
-	12	0.003	-0.005	0.009		-0.009	0.016	-0.008	0.001
	1	3.041	0.341	-3.933	0.552	0.517	$2 \cdot 434$	0.609	
		0.947	-1.158	0.466	-0.255	7.205	-0.741	-0.374	
	3 5	0.002	-0.069	-0.075	0.142	0.945	0.037	0.119	
	7	0.050	-0.046	0.063	-0.068	-0.071	-0.070	-0.016	
	9	-0.017	0.018	-0.039	0.037	0.021	0.020	0.016	
	11	0.010	-0.012	0.020	-0.018	-0.014	-0.008	-0.010	
]	13	-0.004	0.005	-0.005	0.004				
18	0	-1.425	0.136	2.287	-0.324	1.020	0.297	-1.260	-0.057
	2	-1.887	-0.288	-0.371	-0.086	-2.079	0.051	1.013	0.016
	4	1.017	1.492	0.160	0.036	0.117	0.130	-0.263	0.017
	6	0.022	0.031	-0.045	-0.014	0.119	-0.175	0.074	-0.018
	8	0.002	-0.007	-0.005	0.010	-0.012	0.036	-0.037	0.013
	lo		-0.003	0.001	0.001	0.010	-0.025	0.021	-0.006
.]	12		-0.002	0.004	-0.004	-0.004	0.008	-0.006	0.002
	1	2.354	-0.516	-2.345	0.507	1.427	0.506	0.315	
	3	0.613	-0.780	0.364	-0.198	4.297	-0.230	-0.234	
	5	0.006	-0.039	-0.071	0.104	0.817	0.100	0.081	
	7	0.032	-0.020	0.037	-0.049	-0.064	-0.054	-0.011	
	9	-0.011	0.010	-0.027	0.028	0.021	0.014	0.015	
	[]	0.006	-0.006	0.014	-0.014	-0.011	-0.005	-0.006	
]	13	-0.002	0.002	-0.003	0.003				

Table XXIII J. Values of $\zeta/He^{i\sigma t}$ for the semidiurnal tide (K_2)

	Co	efficients of	$\cos s\theta \cos nz$		cients of —a ficients of -			
βs	n = 0	$\frac{}{2}$	4	6	n=1	3	$\frac{\lambda}{5}$	7
19 0	-1.130	-0.036	1.906	-0.408	0.227	1.017	-1.203	-0.041
$\overset{\circ}{2}$	-1.336	-0.227	-0.579	-0.131	-1.826	-0.147	0.962	0.010
$\overline{\overset{-}{4}}$	1.074	1.653	0.224	0.042	0.241	-0.005	-0.256	0.019
$\bar{6}$	0.038	0.056	-0.050	-0.023	0.073	-0.130	0.079	-0.021
8	-0.002	-0.007	-0.004	0.010	0.001	0.025	-0.041	0.016
10	0 0 0	0.002	0.001	-0.001	0.003	-0.018	0.023	-0.008
12		-0.004	0.004	-0.002	-0.001	0.005	-0.006	0.002
1	1.948	-0.767	-1.836	0.656	2.046	-0.739	0.184	
3	0.431	-0.638	0.421	-0.213	$2 \cdot 893$	0.015	-0.178	
5	0.026	-0.025	-0.105	0.103	0.861	0.196	0.080	
7	0.025	-0.011	0.035	-0.050	-0.065	-0.052	-0.013	
9	-0.007	0.007	-0.028	0.028	0.022	0.016	0.012	
11	0.005	-0.005	0.014	-0.014	-0.013	-0.006	-0.006	
13	-0.002	0.002	-0.003	0.003				
20 0	0.505	0.005	0.000	0.551	0.704	0.015	1 700	0.007
$\begin{array}{ccc} 20 & 0 \\ \end{array}$	-0.767	-0.387	2.039	-0.771	-0.724	2.317	-1.566	-0.027
$\frac{2}{4}$	-0.598	-0.340	-1.122	-0.226	-1.701	-0.535	1.252	-0.016
$\frac{4}{c}$	1.522	2.232	0.388	0.090	0.458	-0.151	-0.347	0.040
6	0.080	0.103	-0.071	-0.030	0.034	$-0.118 \\ 0.024$	0.119	-0.035
8	-0.006	-0.010	-0.004	$0.019 \\ 0.001$	$0.014 \\ -0.004$		-0.061	0.023
10	0.002	0.006	0.006	-0.001	0.001	-0.018	0.032	-0.010
12	-0.004	-0.002		-0.002	0.001	0.005	-0.008	0.002
1	1.579	-0.992	-1.729	1.142	3.072	-2.524	0.078	
3	0.250	-0.606	0.675	-0.319	1.705	0.276	-0.155	
5	0.071	-0.001	-0.209	0.139	1.078	0.408	0.104	
7	0.026	-0.008	0.052	-0.069	-0.078	-0.065	-0.021	
9	-0.006	0.009	-0.043	0.041	0.023	0.021	0.014	
11	0.003	-0.006	0.023	-0.020	-0.013	-0.008	-0.010	
13	-0.001	0.002	-0.005	0.005				

370

A. T. DOODSON

		°06	0.000	0.000	000.0	000.0	0.000	000-0	-0.569	-0.556	-0.498	0.358	-0.132	000-0	9.740	9.707	7.780	162.6	7.000	0.000	1.366	122.1	0.887	0.499	961.0	000-0	0.915	607.0	607.0	0.058	-0.073	0.000	0.701	0.171	-0.874 -	- 1.329	0.000	>
		°08	-0.342	-0.321	-0.262	-0.171	-0.059	0.000	-0.904	-0.855	801.0	-0.470	c91:0-	0.00	9.235	8.637	869.9	4.483	1.544	0.000	0.996	0.830	0.636	0.354	0:110	0.00	0.569	0.433	0.153	0.036	-0.041	0.000	0.431	0.078	-0.578	-0.813	-0.374 0.000	200.0
Lynder (K_2)	ζ_2/H	。09	-0.866	-0.814	-0.663	-0.443	-0.150	0.000	-1.376	-1.285	-1.030	099-0-	-0.226	000.0	7.466	6.903	5.399	3.360	1.131	0.00	0.281	0.246	0.166	980-0	0.031	0.00	-0.023	-0.052	-0.098	860-0-	-0.041	0.000	0.212	0.087	-0.146	-0.239	-0·112	000.0
SEMIDIURNAI		40°	-0.985	-0.925	-0.754	-0.492	-0.171	0.000	-1.379	-1.290	-1.039	-0.669	-0.230	0.000	5.149	$\frac{4.775}{2.22}$	3.765	2.366	0.802	0.000	-0.165	-0.155	-0.128	-0.087	-0.031	0.000	-0.329	-0.312	-0.258	-0.167	-0.057	0.000	0.153	0.125	0.061	0.008	0.005	0.000
ζ_1/H and ζ_2/H for the semidiurnal tide (K_2)		20°	-0.643	-0.604	-0.492	-0.321	-0.112	0.000	-0.859	-0.806	-0.654	-0.425	-0.147	0.000	2.606	2.437	1.962	1.263	0.434	000.0	-0.217	-0.203	-0.165	-0.107	-0.037	0.000	-0.285	-0.266	-0.212	-0.135	-0.046	0.000	0.094	0.093	0.083	0.056	0.019	0.000
		$\overset{\circ}{06}$	-1.000	-0.883	-0.587	-0.250	-0.030	0.000	-1.163	-0.986	-0.533	-0.014	0.328	0.375	-1.445	-1.944	-3.213	-4.667	-5.622	-5.753	-1.792	-1.664	-1.325	-0.910	-0.622	-0.585	-2.537	-2.271	-1.556	$-0.699 \cdot 0$	-0.049	0.039	-4.866	-4.247	-2.498	-0.222	1.408	1.640
VALUES OF		°08	-0.940	-0.826	-0.539	-0.212	0.001	0.030	-1.101	-0.934	-0.517	-0.052	0.245	0.285	-1.209	-1.561	-2.419	-3.339	-3.907	-3.983	-1.657	-1.505	-1.124	-0.700	-0.428	-0.391	-2.369	-2.070	-1.337	-0.536	-0.030	0.039	-4.582	-3.878	-2.124	-0.198	1.018	1.182
TABLE XXIV A.	χ_1/H	09	-0.500	-0.412	-0.190		0.227	0.250	-0.636	-0.516	-0.221	0.104	0.308	0.336	0.333	0.171	-0.215	-0.612	-0.846	-0.877	-0.734	-0.613	-0.319	$900 \cdot 0 -$	0.185	0.210	-1.185	-0.963	-0.440	0.092	0.406	0.447	-2.554	-2.032	-0.805	0.428	1.143	1.236
TABL		40°	0.174	0.222	0.344	0.484	0.574	0.587	0.084	0.144	0.294	0.462	0.569	0.584	2.425	2.359	2.197	2.019	1.906	1.891	0.614	0.668	0.802	0.950	1.043	1.056	0.566	099.0	0.887	1.129	1.276	1.296	0.471	$969 \cdot 0$	1.237	1.806	2.154	2.201
		$\theta = 90^{\circ}$	0.766	0.780	0.814	0.854	0.880	0.883	0.720	0.736	0.775	0.821	0.850	0.854	4.128	4.116	4.085	4.046	4.018	4.014	1.776	1.786	1.813	1.850	1.876	1.880	2.074	2.093	2.141	2.197	2.235	2.240	3.091	3.134	3.248	3.384	3.476	3.489
			ر گ	•	8 €	99	8 8	6 6		06	4	09	80	90	0	20	40	09	08	06	С	50	40	09	80	06		50	40	09	8	06		20	40	<u>0</u> 9	80	06
		8	2 C						_	٠,					9	l					೧೦)					4)C	•				

Table XXIV b. Values of ζ_1/H and ζ_2/H for the semidiurnal tide (K_2)

TIDES IN OCEANS BOUNDED BY MERIDIANS

	90°	0.17	4.90	13.87	16.48	7.43	00.00	990.0	0.841	2.592	3.155	1.437	0.000	-1.294	-0.236	1.917	2.919	1.412	000.0	-9.85	-6.19	1.80	6.73	3.67	0.00	12.35	90.6	1.47	-4.04	-2.62	0.00
	°08	-1.26	2.19	8.34	98.6	4.33	00.00	-0.614	0.130	1.467	1.929	0.837	0.000	-1.740	-0.794	0.984	1.742	0.833	0.000	-9.84	-6.34	0.48	4.10	2.20	0.00	11.10	2.86	1.35	-2.55	-1.59	0.00
$\chi_{2/H}$	09	-7.19	-5.21	-1.31	1.04	0.73	0.00	-2.155	-1.636	009.0 -	0.085	0.126	0.000	-2.752	-2.059	969.0 -	0.166	0.179	0.000	-7.90	-5.57	-1.17	1.32	0.87	00.0	4.65	2.86	-0.40	-1.92	86.0 -	00.00
	40°	-10.61	-9.44	-6.65	-3.64	-1.12	0.00	-2.927	-2.588	-1.795	-0.959	-0.290	0.000	-2.970	-2.577	-1.675	-0.496	-0.213	000.0	-4.62	-3.66	-1.67	-0.15	0.14	0.00	-1.87	-2.20	-2.64	-2.27	68.0 -	0.00
	20°	-7.68	-7.19	-5.81	-3.75	-1.29	00.0	-2.057	-1.913	-1.522	-0.965	-0.328	0.000	-1.921	-1.779	-1.393	-0.861	-0.287	0.000	-1.80	-1.60	-1.13	09.0 —	-0.18	00.0	-3.40	-3.23	-2.71	-1.82	-0.64	00.0
i	$^{\circ}06$	26.55	22.36	9.83	-7.71	-21.01	-22.95	2.230	1.776	0.148	-2.501	-4.664	-4.986	0.378	0.240	-0.755	-3.001	-5.096	-5.422	- 1.69	-1.05	-2.06	-7.66	-13.87	-14.75	1.06	-0.20	0.40	3.31	8.49	9.36
i	°08	25.32	20.30	7.72	-6.43	-15.62	-16.88	2.209	1.566	-0.142	-2.189	-3.562	-3.751	0.473	0.083	-1.105	-2.773	-4.024	-4.205	-1.45	-1.74	-3.71	-7.72	-11.12	-11.63	1.18	0.79	1.25	3.96	6.74	7.18
ζ_1/H	009	16.88	12.87	3.61	- 5.50	-10.69	-11.36	2.083	1.480	0.079	-1.308	-2.106	-2.209	1.291	0.784	-0.418	-1.647	-2.374	-2.465	1.52	0.47	-2.18	-5.12	-6.93	-7.22	0.43	0.75	1.80	3.31	4.41	4.57
	40°	4.05	2.13	-2.41	-7.12	-10.00	-10.39	1.926	1.579	0.745	-0.123	-0.640	- 0.708	2.778	2.415	1.529	0.587	0.012	-0.064	8.18	7.22	4.85	2.30	0.71	0.50	- 3.98	-3.56	-2.47	-1.23	-0.46	-0.36
	$\theta = 20^{\circ}$	-7.25	- 7.70	- 8.80	-10.04	-10.92	-11.05	1.771	1.675	1.431	1.155	0.974	0.949	4.180	4.062	3.760	3.408	3.173	3.140	15.17	14.84	13.95	12.86	12.15	12.05	06.6 -	-9.75	-9.30	-8.71	-8.33	- 8.28
	×	0	20	40	09	80	06	0	20	40	09	80	06	0	20	40	09	80	06	0	50	40	09	80	90	0	50	40	09	08	06
	β	. 9						7						œ						6						10					

371

	-	$^{\circ}06$	8.595	6.436	1.447	-2.464	-1.774	0.000	13.70	10.19	86.0	-6.39	-4.04	00.00	-20.27	-13.99	4.98	20.72	11.89	00.0	-2.74	-1.50	3.96	90.6	4.97	00.0	1.06	1.17	7.35	14.98	8.27	0.00
		$^{\circ}08$	7.419	5.278	1.056	-1.584	-1.072	0.000	11.88	8.21	0.47	-4.20	-2.40	00.00	-18.39	-11.14	4.93	13.97	4.09	00.00	-2.87	96.0 -	3.79	6.32	3.01	00.0	0.30	2.30	2.68	10.85	5.05	00.0
TIDE (K_2)	$\widetilde{\zeta_2/H}$	$^{\circ}09$	1.646	0.627	-1.038	-1.613	-0.771	0.000	1.73	0.10	-2.76	-3.51	-1.52	00.00	-4.47	-0.49	6.58	8.55	3.71	00.0	-2.44	-0.84	2.09	3.09	1.37	00.0	-4.79	-2.21	2.80	4.79	2.17	0.00
MIDIURNAL		40°	-3.938	-3.899	-3.477	-2.471	-0.925	000.0	8.39	8.11	90.7 -	- 4.90	-1.76	0.00	10.92	11.05	10.65	8.10	3.04	00.0	-1.51	68.0 -	0.37	1.00	0.50	0.00	-10.86	-8.95	- 4.78	-1.33	80.0 -	0.00
FOR THE SEMIDIURNAL		20°	-4.446	-4.185	-3.393	-2.218	-0.788	0.000	-9.03	-8.43	-6.79	-4.42	-1.55	00.0	12.72	11.92	9.72	6.44	2.27	00.0	-0.70	-0.59	-0.34	60.0 -	0.00	00.0	-9.71	-8.92	-6.80	-4.01	-1.29	0.00
ζ_1/H and ζ_2/H		°06	-0.779	-1.250	-2.211	-0.497	3.798	4.649	-1.29	-4.30	-7.34	-2.76	4.87	6.22	-1.36	80.8	19.12	9.05	-10.60	-14.10	-4.05	0.31	6.05	3.14	-4.32	-5.69	-13.21	-4.90	7.21	4.28	-7.91	-10.25
Values of ζ_1		°08	-0.378	-0.379	-0.720	0.164	2.682	3.198	-0.34	-2.43	-4.39	-1.80	2.17	2.82	-3.40	4.22	12.95	7.70	-2.33	-4.02	-4.28	-0.50	4.28	2.95	-0.76	-1.40	-12.57	-5.03	5.20	4.17	-1.97	-3.07
	$\mathcal{L}_{1/H}$	°09	1.055	1.024	0.743	0.775	1.454	1.607	3.93	2.40	-0.04	-0.74	-0.26	-0.15	-12.85	-6.74	3.12	6.64	5.88	5.65	- 5.38	-2.51	2.00	3.47	3.07	2.96	- 8.55	- 3.53	4.06	5.87	4.50	4.21
TABLE XXI		40°	0.218	-0.021	-0.258	-0.231	-0.266	-0.284	4.80	3.67	1.37	-0.40	-1.15	-1.24	-16.90	-12.54	-3.84	2.78	5.72	90.9	-5.74	-3.92	-0.50	1.93	3.07	3.22	- 5.38	-2.86	1.68	4.36	5.13	5.20
*		$ heta=20^\circ$	-2.654	-2.773	-2.842	-2.776	-2.819	-2.838	1.38	1.00	0.14	99.0 -	-1.09	-1.14	-12.58	-11.07	29.2	4.48	-2.76	-2.54	-5.02	-4.43	- 3.13	$-\frac{1.90}{1.90}$	- 1.18	$-\frac{1.08}{1.08}$	- 5.37	-4.67	- 3.08	-1.63	-0.93	-0.85
		74	°0	20	9	09	2	<u>06</u>	0	20	$\frac{1}{40}$	09	08	06	0	20	40	09	80	06	0	20	40	09	08	06	0	20	40	09	80	06
		β	=						12						13						14	! !					15					

373

		06	-4.56	-2.37	06.4	-18.51	-10.70	00.0	-1.183	-0.055	-1.017	-4.284	-2.731	0.000	-0.386	0.652	0.262	-2.257	-1.674	0.000	0.104	1.295	1.124	-1.619	-1.500	0.000	0.644	2.400	2.364	-1.691	-1.976	0.000
(K_2)		$^{\circ}08$	-3.95	-4.52	- 9.92	-13.91	-6.53	00.00	-1.360	-1.077	-2.085	-3.314	-1.626	0000	-0.769	-0.302	-0.728	-1.748	-0.938	0.000	-0.471	0.209	0.052	-1.158	-0.765	0.000	-0.238	0.929	0.983	-0.957	-0.893	0.000
	ζ_2/H	$_{\circ}09$	6.18	3.07	-3.32	-6.10	-2.81	0.00	1.157	0.534	-0.867	-1.520	-0.697	0.000	0.123	0.001	-0.531	-0.846	-0.376	0.000	-0.649	-0.420	-0.344	-0.519	-0.271	0.000	-1.816	-1.014	-0.155	-0.221	-0.171	0.000
SEMIDIUR		40°	21.46	18.27	10.92	4.25	0.87	00.0	6.325	5.444	3.392	1.462	0.351	0.000	3.545	3.137	2.059	0.931	0.236	0.000	2.049	1.942	1.478	0.771	0.210	0.000	0.586	0.874	1.131	0.815	0.266	0000
FOR THE SEMIDIURNAL TIDE		20°	21.26	19.57	15.09	9.12	2.97	0.00	6.853	6.314	4.880	2.981	0.988	0.000	4.361	4.050	3.159	1.929	0.639	0.000	3.283	3.074	2.450	1.526	0.508	0.000	2.648	2.509	2.078	1.377	0.483	0.000
ζ_1/H and ζ_2/H		°06	25.49	12.92	-6.59	-4.94	11.33	14.57	8.458	4.723	-1.343	-1.388	3.130	4.056	6.016	3.487	-0.812	-1.094	1.976	2.624	5.570	3.180	-0.942	-1.229	1.786	2.426	6.538	3.676	-1.580	-1.991	2.300	3.228
Values of ζ_1/H		°08	23.19	11.57	-4.69	-4.42	3.77	5.27	7.479	4.015	-0.903	-1.002	1.293	1.719	5.224	2.866	-0.514	-0.621	0.946	1.240	4.750	2.530	-0.601	-0.596	0.948	1.234	5.467	2.803	-1.022	-0.911	1.311	1.731
D.	ζ_1/H	09	67.6	3.19	-6.05	-6.90	-4.12	-3.63	1.916	0.278	-1.774	-1.475	-0.435	-0.268	0.632	-0.252	-1.209	-0.691	0.158	0.288	600.0	-0.689	-1.191	-0.358	0.520	0.641	-0.782	-1.356	-1.550	-0.245	1.040	1.224
BLE XXIV		40°	0.26	-2.06	-5.41	-6.07	-5.54	-5.44	-1.860	-2.122	-2.130	-1.402	-0.770	-0.684	-2.321	-2.224	-1.634	-0.611	0.095	0.187	-2.880	-2.616	-1.583	-0.157	999.0	0.762	-4.293	-3.686	-1.901	0.252	1.523	1.681
TABLI		$\theta = 20^{\circ}$	2.12	1.71	0.87	0.34	0.25	0.26	-0.607	-0.564	-0.389	-0.082	0.173	0.211	-0.868	-0.726	-0.356	0.115	0.469	0.522	-0.895	-0.709	-0.156	0.535	0.967	1.023	-0.951	-0.584	0.307	1.331	2.054	2.159
		×	$^{\circ}0$	20	40	09	80	06	0	50	40	09	80	06	0	50	40	09	80	90	0	20	40	09	80	06	0	50	40	09	80	06
		β	16						17						18						19						20					